
ARM Industrial Module
AIM 711

Operating System eCos

26th November 2003

Contents

1 Overview 2

2 Getting started 2

3 Bootmanager 3
3.1 Network settings . 3
3.2 Date . 4
3.3 Store an application . 4
3.4 Run an application . 5
3.5 Boot script . 5

4 Components 7
4.1 Standard IO . 7
4.2 Serial interfaces . 7
4.3 Ethernet . 9
4.4 FLASH . 9
4.5 Filesystem . 11
4.6 Real Time Clock . 11
4.7 EEPROM . 12
4.8 Service adapter . 13

5 Resources 14

Version 1.0 AIM 711 Operating System eCos 1

2 GETTING STARTED

1 Overview

This Documentation should give a starting point of developing an embedded system with
the AIM 711 using the realtime operating system eCos. The whole sources and tools of
eCos are included on the AIM development CDROM.

Embedded System AIM

Bootmanager
RedBoot

Hardware
AIM

AIM Manager

Hyperterminal

Insight
Debugger

Dev−C++

Windows Host

Application

eCos with Drivers

Development Enviroment

Configuration console

Configuration program

Operating system
Configurationt ool
for eCos

Figure 1: Overview

Special to embedded systems is that development have to be done on an host system,
but application should run on the embedded system. So there have to be cross compiler
which generates the code for the target system and a possibility to debug the application
from the host. In the state of delivering the AIM contains the Bootmanager RedBoot
which manages the FLASH and makes it possible to debug an application from remote.
Figure 1 shows how the host tools communicate with the AIM.

This document describes how to use the components of the AIM with the possibilities
of eCos.

2 Getting started

At first the bootmanager RedBoot have to be configured for your network. If the AIM
is not reachable with its default IP-address it could be accessed over the serial interface
on the service adapter. The default IP-address of RedBoot is set to 192.168.1.254 and
the GDB connection port to 9000.

Version 1.0 AIM 711 Operating System eCos 2

3 BOOTMANAGER

The best way to start developing an application is to use the AIM Project Templates
program as described in the AIM Software Documentation. The Minimal project is a
simple ”Hallo World” application, which is shown in Listing 1.

// **
// * Example program for the ARM Industrial Modul "minimal" *
// **

#include <stdio.h>

int main(void)
{

printf("\nHello World!\n");

return 0;
}

Listing 1: Simple Hello World application

The AIM Check project is more complex does make use of every components contained
on the AIM. In the Chapter 4 Components is described how to use these components as
done in AIM Check. Many of these features are only available if eCos is configured as
in AIM Check and will not work if Minimal is used as template. The Minimal project
instead demonstrates how small the footprint of an application could be, although a
whole multi threading kernel is integrated.

3 Bootmanager

As bootmanager RedBoot is used, which is based on eCos too. It is responsible for
loading and starting an application and manages the FLASH content. Additionally
many things like the date and the MAC-address1 could be configured over it. RedBoot
has a simple command line interface to interact with the user. This interface could be
reached over the serial interface on the service adapter or over network with telnet2.

3.1 Network settings

The network settings for RedBoot are saved in a special partition in FLASH. The fol-
lowing command fconfig could be used to set the network setting:
RedBoot> fconfig
Run script at boot: false
Use BOOTP for network configuration: false
Gateway IP address: 192.168.1.1

1The MAC-address is the 6 byte hardware address of the network interface, which must exist only once.
2Telnet is a terminal program to communicate over TCP, which exists on almost every host operating

system.

Version 1.0 AIM 711 Operating System eCos 3

3 BOOTMANAGER

Local IP address: 192.168.1.254
Local IP address mask: 255.255.255.0
Default server IP address: 192.168.1.1
DNS server IP address: 192.168.1.1
Network hardware address [MAC] for eth0: 0xEA:0x00:0x00:0x0E:0xE5:0x9F
GDB connection port: 9000
Force console for special debug messages: false
Network debug at boot time: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x020fe000-0x020ff000: .
... Program from 0x007f1000-0x007f2000 at 0x020fe000: .

This includes the MAC-address which is also used later in the application. The all other
network settings of the application have to be set by it self. But it is important that the
application must have another IP-address as RedBoot, else remote debugging will not
work.

The default IP-address is set to 192.168.1.254 and the GDB connection port to 9000.

3.2 Date

The AIM has an Real Time Clock, which could be accessed RedBoot. The actual date
could be set by the command date as follows:
RedBoot> date 11:20:00 11/14/2003

Type only date to get the current date printed.

3.3 Store an application

To store an application in FLASH at first it have to be loaded in to RAM using the load
command. There are many different possibilities to load from. The load command works
for example over serial line with X-Modem protocol and over network from a TFTP server
or HTTP server. The following example uses the default way a TFTP server:
RedBoot> load -m tftp -h 192.168.1.36 -r -b 0x40000 aim_check.bin.gz
Raw file loaded 0x00040000-0x0006a414, assumed entry at 0x00040000

This will load the compressed version of AIM Check into RAM. To store the application
to flash use:
RedBoot> fis create -r 0x40000 -e 0x40040 AIM_Check
An image named ’AIM_Check’ exists - continue (y/n)? y
... Erase from 0x0202b000-0x02056000:
......
... Program from 0x00040000-0x0006a415 at 0x0202b000:
......................
... Erase from 0x020ff000-0x02100000: .
... Program from 0x007fe000-0x007ff000 at 0x020ff000: .

The option -r is the runtime address of the application and should be alway 0x40000
for the AIM 711 . The next option -e is the entry point and should be 0x40040 . With
-f it is possible to specify where the image should be stored in FLASH, but if it is not
used the image will be stored to the first large enough space. The length of an image

Version 1.0 AIM 711 Operating System eCos 4

3 BOOTMANAGER

is taken from the last load command. In the example above does the image exists jet
and will be overwritten.

It is also possible to load and store none compressed images, but this documentation
restricted to use compressed ones to save FLASH space.

3.4 Run an application

To run an application it have to be first decompressed and then loaded to the runtime
address with the following command:
RedBoot> fis load -d AIM_Check
Image loaded from 0x00040000-0x00091458

Now the application could just be started with go :
RedBoot> go
...
ARM Industrial Module Checker
...

To run an application automaticly after booting a boot script as described in chapter 3.5
should be used.

3.5 Boot script

The boot script in RedBoot is just a list of commands executed one after another like a
batch file. To create a boot script fconfig must be called again and Run scrip at
boot have to be set to true . As next step the commands could be entered:
RedBoot> fconfig
Run script at boot: true
Boot script:
Enter script, terminate with empty line
> > fis load -d AIM_Check
> > go
> >
Boot script timeout (1ms resolution): 10
...
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x020fe000-0x020ff000: .
... Program from 0x007f1000-0x007f2000 at 0x020fe000: .

In the above example the boot script timeout is set to 10 ms, which cause to run the
application immediately. Now the AIM can be restarted by typing reset :
RedBoot> reset
... Resetting.
+Ethernet eth0: MAC address ea:00:00:0e:e5:9f
IP: 192.168.1.254/255.255.255.0, Gateway: 192.168.1.1
Default server: 192.168.1.1, DNS server IP: 192.168.1.1
RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version VS 1.1.0 - built 18:25:55, Nov 10 2003
Platform: AIM 711 (ARM 7TDMI)
Copyright (C) 2000, 2001, 2002, Red Hat, Inc.
RAM: 0x00000000-0x00800000, [0x00034428-0x007ef000] available

Version 1.0 AIM 711 Operating System eCos 5

3 BOOTMANAGER

FLASH: 0x02000000 - 0x02100000, 256 blocks of 0x00001000 bytes each.
== Executing boot script in 0.010 seconds - enter ^C to abort
RedBoot> fis load -d AIM_Check
Image loaded from 0x00040000-0x00091458
RedBoot> go
...
ARM Industrial Modul Checker
...

To abort the boot script Ctrl-C can be entered while booting. For accessing RedBoot
from the serial interface this is time enough, but to access it over network with telnet
the boot script timeout have to be set at least to a couple of seconds.

Version 1.0 AIM 711 Operating System eCos 6

4 COMPONENTS

4 Components

4.1 Standard IO

The first things which are used in almost every application at least for debugging output
are calls like printf() and scanf() . They use the Standard IO channels stdin ,
stdout and stderr , which on the AIM in default is the serial interface on the service
adapter. While debugging the application with Insight or arm-elf-gdb3 the standard
output is routed to the console of the debugger.

4.2 Serial interfaces

int ret, ser_fd;
struct termios ser_termios;

// Open device
ret=open("/dev/termios1" , O_RDWR|O_NONBLOCK);
if (ret < 0)

return ret;
ser_fd=ret;

// Read line control parameter
ret=tcgetattr(ser_fd, &ser_termios);
if (ret < 0)

return ret;

// Set line control parameter
cfmakeraw(&ser_termios);
ser_termios.c_cflag &= ~(CSIZE|CSTOPB|PARENB);
ser_termios.c_flags |= (CS8|CREAD);
cfsetispeed(&ser_termios, B57600);
cfsetospeed(&ser_termios, B57600);

ret=tcsetattr(ser_fd, TCSANOW, &ser_termios);
if (ret < 0)

return ret;

Listing 2: Open and configure serial interface COM1

The AIM has three serial interfaces in all, whereas the first one is the one on the service
adapter which is normally only used for interacting with RedBoot and for being the
Standard IO interface as described in Chapter 4.1. The service port is the first internal
serial interface of the processor. The second one called COM1 is the external 16550
UART4 for high speed communication. It is full features with all modem control signals
and consequently able to do hardware handshake. The third one called COM2 is the
second internal serial interface of the processor and does not have the features of COM1
like the modem control signals.

3Insight respectively arm-elf-gdb are part of the GNU compiler tool chain.
4The 16550 UART is a standard serial interface controller with 16 byte FIFO buffer.

Version 1.0 AIM 711 Operating System eCos 7

4 COMPONENTS

The example code listed in Listing 2 open COM1 and sets the line control parameter.
Whereas /dev/termios1 is COM1 used with the POSIX compatible termios API.

static const char serial_test_string[]= "+++ This is the test string +++" ;
int ret, received;

// Write data to serial interface
ret=write(ser_fd,serial_test_string, sizeof (serial_test_string));
if (ret < 0)

return ret;

// Wait for incomming characters
received=0;
for (i=0;i<3;i++)
{

// Try to read data from serial interface
ret=read(ser_fd,&serial_test_buffer[received], \

sizeof (serial_test_buffer)-received);
if (ret < 0)
{

if (errno == EAGAIN) // No data available yet
ret=0;

else
return ret;

}
received+=ret;
if (received< sizeof (serial_test_string))

sleep(1); // Wait one second
else

break ; // Stop waiting if received the whole test string
}

// Close serial interface
close(ser_fd);

Listing 3: Send and receive an example string

In Listing 3 it will be send an example string and tried to receive it back. If a loopback
is connected to COM1 it will receive the echoed string, else it will stop waiting after 3
seconds. In this simple example this is implemented polling three times with an delay
of one second each. ECos does also support the more powerful select() call which
should be used in such case.

Version 1.0 AIM 711 Operating System eCos 8

4 COMPONENTS

4.3 Ethernet

The standard way to initialize the network in eCos is to configure the eCos library with
the configtool staticly to either use DHCP5 or use a static IP-address. Then the ap-
plication only have to call init_all_network_interfaces() to start the ethernet
interface.

If an application have to manage the network settings by it self, it could use the code
of the AIM Check example in net.c . It tries to get the network settings from DHCP
and if it doesn’t get a response it use its own fallback settings. Using this code makes it
possible to use settings stored for example in FLASH.

int s;
struct hostent *hostinfo;
struct sockaddr_in sock_addr;

sock_addr.sin_port=htons((u_short)port);
sock_addr.sin_family = AF_INET;
sock_addr.sin_len = sizeof (sock_addr);

// Try to get the ip-address from an DNS server
if ((hostinfo=gethostbyname(hostname))!=NULL)

memcpy((char *)&sock_addr.sin_addr, hostinfo->h_addr, hostinfo->h_length);
else

return -1;

// Get a new socket for TCP/IP
if ((s=socket(AF_INET,SOCK_STREAM,0))<0)

return -1;

// Connect to the destination
if (connect(s,(struct sockaddr*)&sock_addr, sizeof (sock_addr))<0)
{

// Close the socket
close(s);
return -1;

}

Listing 4: Connect to destination using TCP/IP

As shown in Listing 4 in eCos it is possible to use the well known socket API which
is also POSIX standard. In this simple example a destination will be connected over
TCP/IP. If the host program just makes an echo of th incoming data, the same code as in
Listing 3 of the Chapter 4.2 Serial Interfaces could be used to test a network connection.

4.4 FLASH

To access the FLASH there exist the functions flash_read() , flash_erase() and
flash_program() . These functions could be used to access the FLASH directly with

5The Dynamic Host Configuration Protocol is used to get the network configuration from a central
server.

Version 1.0 AIM 711 Operating System eCos 9

4 COMPONENTS

knowledge of which range to use without overwriting the Bootmanager or other impor-
tant data.

The best way to find out which region of FLASH could be used for application data ist
to create a special partition with RedBoot called JFFS2. The following command could
do that:
RedBoot> fis create -f 0x20bd000 -l 0x2000 -b 0x40000 Data

static char ws[FLASH_MIN_WORKSPACE];
static char flash_test_string[]= "+++ This is the flash test string +++" ;
static char buf[1024];
char *flash_base;
unsigned long size;
void *erraddr;

if (flash_init(ws, FLASH_MIN_WORKSPACE, &printf))
return -1;

// Open the "Data" partition
if (!CYGACC_CALL_IF_FLASH_FIS_OP(CYGNUM_CALL_IF_FLASH_FIS_GET_FLASH_BASE,

"Data" ,
(CYG_ADDRESS*)&flash_base))

return -1;
if (!CYGACC_CALL_IF_FLASH_FIS_OP(CYGNUM_CALL_IF_FLASH_FIS_GET_SIZE,

"Data" ,
&size))

return -1;

if (size < sizeof (flash_test_string))
return -1;

// Erase FLASH region
if (flash_erase(flash_base, sizeof (flash_test_string), &erraddr))

return -1;

// Save test string to FLASH
if (flash_program(flash_base, flash_test_string,

sizeof (flash_test_string), &erraddr))
return -1;

// Read back the test string
if (flash_read(flash_base, buf, sizeof (flash_test_string), &erraddr))

return -1;

// Verify the read test string
if (strncmp(buf,flash_test_string, sizeof (flash_test_string)))

return -1;

Listing 5: Write and read the FLASH content

The application could get the base address and the size of the partition over the special
CYGACC_CALL_IF_FLASH_FIS_OP()functions. The example listed in Listin 5 shows
how to do that. It is important to erase the FLASH region first which should be written.
For complexer usage of FLASH a filesystem is supported, which is discribed in the next
Chapter.

Version 1.0 AIM 711 Operating System eCos 10

4 COMPONENTS

4.5 Filesystem

eCos supports the Second journaling flash filsystem JFFS2. It is a log-structured file
system designed for use on flash devices in embedded systems. To use the filsystem a
partiton called JFFS2 have to be created with RedBoot :
RedBoot> fis create -f 0x20c0000 -l 0x30000 -b 0x40000 JFFS2

int fd;
ssize_t wrote, len;
char test_string[] = "This is a test string" ;

// Mounting filesystem (JFFS2)
if (mount("/dev/flash1" , "/" , "jffs2") < 0)

return -1;

// Change directory to ’/’
if (chdir("/") < 0)

return -1;

// Make a directory
if (mkdir("testdir" , 0) < 0)

return -1;

// Create a new file
fd = open("testdir/testfile.txt" , O_WRONLY|O_CREAT);
if (fd < 0)

return -1;

// Write a string to the file
wrote = write(fd, test_string, strlen(test_string));
if (wrote != strlen(test_string))

return -1;

// Close file
close(fd);

Listing 6: Use the JFFS2 filesystem

After the first time mounting the filessytem with mount() it is empty. To create files
and directorys the standard file access functions like open(), mkdir() etc could be used.
In the Listing 6 a file are created after first making a directory.

The AIM Check example includes a simple commandline interface to manage the fil-
system. Additionaly it is possible to use TFTP6 to up- and download files. In the file
tftp.c of AIM Check the TFTP server is started.

4.6 Real Time Clock

The Real Time Clock of the AIM is fully integrated in eCos. To get the actual date
the POSIX standard function time() could be used. It returns the seconds since

6TFTP Trivial File Transfer Protocol is a very simple file transfer protocol

Version 1.0 AIM 711 Operating System eCos 11

4 COMPONENTS

00:00:00, January 1, 1970. These seconds could be converted to a readable string using
ctime() . To set the date such a string could be converted to a special structure using
strptime() , which then could be converted to seconds back using mktime() .

time_t t, orig_t;
char *s;
struct tm tm;

// Read seconds since 00:00:00 UTC, January 1, 1970
t=time(NULL);
if (t < 0)

return -1;

// Save original time
orig_t=t;

// Convert seconds in to real date
s=ctime(&t);
if (s == NULL)

return -1;

// Print current date
printf("Current date is: %s",s);

// Set date structure
strptime("Fre Nov 7 18:32:12 2003" , "%a %b %d %H:%M:%S%Y", &tm);

// Convert date structure to seconds
t=mktime(&tm);
if (t < 0)

return -1;

// Set date
if (cyg_libc_time_settime(t))

return -1;

Listing 7: Get and set the date and time

In Listing 7 such procedure is used. For writing back the new date to the Real Time
Clock the special eCos function cyg_libc_time_settime() would be called.

The date could also be set over the RedBoot command date and with the AIM Manager.

4.7 EEPROM

To access the EEPROM which is connected over the I2C bus there are two AIM specific
functions called hal_aim711_eeprom_read() and hal_aim711_eeprom_write() .
This functions are part of the AIM HAL7. To use them cyg/hal/plf aux.h have to be
included.

Listing 8 how to read and write to the EEPROM. The second argument of the EEPROM
access functions is the offset address to access. This makes is possible to read or write

7The Hardware Abstraction Layer makes the adaptation of the AIM hardware to eCos.

Version 1.0 AIM 711 Operating System eCos 12

4 COMPONENTS

static char eeprom_buf[256];
static char eeprom_test_string[]= "+++ This is the eeprom test string +++" ;
int ret;

// Save test string to EEPROM
ret=hal_aim711_eeprom_write(eeprom_test_string, 0, sizeof (eeprom_test_string));
if (ret < sizeof (0))

// Read back the test string
ret = hal_aim711_eeprom_read(eeprom_buf, 0, sizeof (eeprom_buf));
if (ret < 0)

return -1;

// Verify the read test string
if (strncmp(eeprom_buf,eeprom_test_string, sizeof (eeprom_test_string)))

return -1;

Listing 8: Write and read the EEPROM content

for example only one byte at any place of the EEPROM.

4.8 Service adapter

The service adapter has the following units:

• Serial interface

• Three LEDs

• JTAG interface

As described in Chapter 4.1 Standard IO the serial interface is used for standard input
and output of RedBoot and an application. Additionally it is possible to let Insight or
arm-elf-gdb connect over it.

#define BIT0 (1<<0)
#define BIT1 (1<<1)
#define BIT2 (1<<2)

hal_diag_led(BIT0|BIT2);

Listing 9: Switch LED 0 and 2 on

The three LED are mainly used in the startup code. If something is wrong the value
of the LEDs would indicate the state where it stopped working. To make usage of the
LEDs in an application it exists the call hal_diag_led(int mask) included from
cyg/hal/hal diag.h. In Listing 9 LED 0 and 2 will be set.

Version 1.0 AIM 711 Operating System eCos 13

5 RESOURCES

5 Resources

• The latest eCos documentation could be found at:
http://sources.redhat.com/ecos/docs-latest

• Firmware updates and newer documentation could be found at:
http://www.visionsystems.de

Version 1.0 AIM 711 Operating System eCos 14

http://sources.redhat.com/ecos/docs-latest
http://www.visionsystems.de

	1 Overview
	2 Getting started
	3 Bootmanager
	3.1 Network settings
	3.2 Date
	3.3 Store an application
	3.4 Run an application
	3.5 Boot script

	4 Components
	4.1 Standard IO
	4.2 Serial interfaces
	4.3 Ethernet
	4.4 FLASH
	4.5 Filesystem
	4.6 Real Time Clock
	4.7 EEPROM
	4.8 Service adapter

	5 Resources

