
OnRISC
IoT Manual

Edition: October 2017Edition: October 2017Edition: October 2017Edition: October 2017Edition: October 2017Edition: October 2017Edition: October 2017Edition: October 2017Edition: October 2017Edition: October 2017Edition: October 2017Edition: October 2017Edition: October 2017Edition: October 2017Edition: October 2017Edition: October 2017Edition: October 2017

Vision Systems GmbH
Tel: +49 40 528 401 0
Fax: +49 40 528 401 99
Web: www.visionsystems.de
Support: faq.visionsystems.de

http://www.visionsystems.de
http://faq.visionsystems.de

The software described in this manual is furnished under a license agreement and may be used
only in accordance with the terms of that agreement.

Copyright Notice

Copyright © 2009-2017 Vision Systems. All rights reserved. Reproduction without permission is
prohibited.

Trademarks

VScom is a registered trademark of Vision Systems GmbH. All other trademarks and brands are
property of their rightful owners.

Disclaimer

Vision Systems reserves the right to make changes and improvements to its product without provid-
ing notice.

Vision Systems provides this document “as is”, without warranty of any kind, either expressed or
implied, including, but not limited to, its particular purpose. Vision Systems reserves the right
to make improvements and/or changes to this manual, or to the products and/or the programs
described in this manual, at any time.

Information provided in this manual is intended to be accurate and reliable. However, Vision
Systems assumes no responsibility for its use, or for any infringements on the rights of third parties
that may result from its use.

This product might include unintentional technical or typographical errors. Changes are periodic-
ally made to the information herein to correct such errors, and these changes are incorporated into
new editions of the publication.

October 2017 OnRISC IoT Manual 2

Contents

Contents

1 Introduction 6

2 IoT Related Protocols 7
2.1 MQTT . 7

2.1.1 Installation . 7
2.1.2 Example: mqtt_gpio . 8

3 IoT Programming: Node-RED 11
3.1 Installation . 11
3.2 Example: Connect WLAN switch to a User LED . 12
3.3 Example: GPIO Access via Modbus/TCP . 13

October 2017 OnRISC IoT Manual 3

List of Figures

List of Figures

1 Baltos as IoT Router . 6
2 MQTT Scheme . 7
3 Node-RED: libonrisc Nodes . 12
4 Node-RED: WLAN switch and LED: Initial Scheme 13
5 Node-RED: WLAN switch and LED: Configured Scheme 13
6 Node-RED: Modbus/GPIO Example Flow Chart . 14
7 Node-RED Modbus/GPIO Example Dashboard . 15
8 Node-RED: Modbus Write Node . 15
9 Node-RED: Modbus Client Configuration . 16
10 Node-RED: Modbus Read . 16
11 Node-RED: modbus2bin Function . 17

October 2017 OnRISC IoT Manual 4

List of Tables

List of Tables

1 MQTT Scheme . 7

October 2017 OnRISC IoT Manual 5

1 Introduction

1 Introduction

This manual gives insight into IoT universe and also shows how OnRISC can be used as an IoT
Router. For deeper understanding we recommend to look at this free eBook: A Reference Guide
To The Internet Of Things1.

IoT or the Internet of Things is a technology about connecting physical devices like sensors and
actuators to the cloud in order to analyse data collected from physical devices and control the
actuators. So the role of OnRISC will be to talk to sensors/actuators via its interfaces like CAN,
Ethernet, serial, GPIO, WLAN etc. and provide this data to a cloud service (see Figure 1 on page
6). OnRISC device can be either a gateway between the sensors and the cloud and/or maintain
controlling logic.

Sensor1

Sensor2

Actuator1

Modbus

Digital Output

BACnet
IoT Cloud

MQTT

MQTT, HTTP

HTTP

SQL
Baltos

Figure 1: Baltos as IoT Router

The first section explains IoT related protocols and how you can store your data in the cloud. In
the second section you’ll learn how you can create your IoT applications via visual flow control
framework almost without a coding effort.

The examples shown in the manual require either Buildroot or Debian installation, but the concept
can be applied to other Linux distributions too.

1https://bridgera.com/ebook/

October 2017 OnRISC IoT Manual 6

https://bridgera.com/ebook/

2 IoT Related Protocols

2 IoT Related Protocols

There are many protocols used in IoT world: MQTT, HTTP, CoAP, AMQP etc. We will describe
only MQTT protocol as it is wide spread and it is supported by the most IoT cloud providers like
Amazon, IBM and Microsoft.

2.1 MQTT

As stated on the projects site2 MQTT is a machine-to-machine (M2M)/"Internet of Things" con-
nectivity protocol. It was designed as an extremely lightweight publish/subscribe messaging trans-
port. It is useful for connections with remote locations where a small code footprint is required
and/or network bandwidth is at a premium. As of version 3.1.1 MQTT became an OASIS Stand-
ard.

MQTT utilizes a “publish/subscribe” message transport model. The central part of this protocol is
a MQTT broker, that receives, manages and routes messages among its nodes. Client authentication
and authorization is also made by the MQTT broker. Table 1 on page 7 and Figure 2 on page
7 provide a MQTT example where three publishers send temperature sensor values (T1-T3) and
three subscribers receiving only relevant values.

Topic Name Subscriber
T1 Sub1, Sub3
T2 Sub2
T3 Sub2, Sub3

Table 1: MQTT Scheme

MQTT
BROKER

Publisher1

Publisher2

Publisher3

Subscriber1 (Sub1)

Subscriber2 (Sub2)

Subscriber3 (Sub3)

T1

T2

T3

T1

T2, T3

T1, T3

Figure 2: MQTT Scheme

2.1.1 Installation

Buildroot already provides both C and Python protocol implementations:

• BR2_PACKAGE_PAHO_MQTT_C

• BR2_PACKAGE_PYTHON_PAHO_MQTT

If you need OpenSSL support, it must be activated prior to MQTT building.

Debian installation requires following steps for C protocol implementation:

1. apt install libssl-dev debhelper fakeroot lsb-release
2http://mqtt.org

October 2017 OnRISC IoT Manual 7

http://mqtt.org

2 IoT Related Protocols

2. cd /usr/src/

3. git clone https://github.com/eclipse/paho.mqtt.c.git

4. cd paho.mqtt.c/

5. mkdir build

6. cd build

7. cmake .. -DPAHO_WITH_SSL=TRUE -DPAHO_BUILD_DEB_PACKAGE=TRUE

8. make

9. cpack

10. dpkg -i *.deb

For Python implementation:

1. apt install python-pip python3-pip

2. pip install paho-mqtt - for Python 2.x environment

3. pip3 install paho-mqtt - for Python 3.x environment

2.1.2 Example: mqtt_gpio

This program publishes Baltos digital inputs:

• onrisc/gpio/input/0

• onrisc/gpio/input/1

• onrisc/gpio/input/2

• onrisc/gpio/input/3

And subscribes to digital outputs:

• onrisc/gpio/output/0

• onrisc/gpio/output/1

• onrisc/gpio/output/2

• onrisc/gpio/output/3

If any output on the MQTT broker would change, Baltos would propagate this value to its digital
outputs. And as soon as Baltos inputs change their state, these values will be propagated to the
MQTT broker.

In order to build the C test example perform:

1. cd /usr/src/

2. git clone https://github.com/visionsystemsgmbh/programming_examples.git

3. cd programming_examples/mqtt/c/

4. mkdir build

5. cd build/

October 2017 OnRISC IoT Manual 8

2 IoT Related Protocols

6. cmake ..

7. make

mqtt_gpio has following syntax:

mqtt_gpio IP address [port]

IP address indicates MQTT broker’s IP address and port is an optional argument specifying broker’s
TCP port (default value is 1883).

mqtt_gpio requires following setup:

1. MQTT broker (either on Baltos or on your host)

2. connect IN0 with OUT0 using a 4,7k resistor

For our example we will use Node.js based broker Mosca3 running on a desktop PC. Install Node.js
according to the project’s documentation4. After this invoke:

1. npm install mosca pino -g with super user permissions

2. mosca -v | pino

We assume, that your host has IP address 192.168.1.170 and MQTT broker works with the standard
TCP port 1883. On Baltos invoke:

./mqtt_gpio 192.168.1.170

You’ll get following output showing that Baltos sent its initial digital input state:

Waiting for up to 10 seconds for publication of 0
on topic onrisc /gpio/input /0 for client with ClientID : Baltos
Message with token value 2 delivery confirmed
Message with delivery token 2 delivered
Waiting for up to 10 seconds for publication of 0
on topic onrisc /gpio/input /1 for client with ClientID : Baltos
Message with token value 3 delivery confirmed
Message with delivery token 3 delivered
Waiting for up to 10 seconds for publication of 0
on topic onrisc /gpio/input /2 for client with ClientID : Baltos
Message with token value 4 delivery confirmed
Message with delivery token 4 delivered
Waiting for up to 10 seconds for publication of 0
on topic onrisc /gpio/input /3 for client with ClientID : Baltos
Message with token value 5 delivery confirmed
Message with delivery token 5 delivered

Mosca’s output shows, that client with ID “Baltos” has made a connection and subscribed to the
topic "onrisc/gpio/output/#" i.e. all published outputs:

3http://www.mosca.io
4https://nodejs.org/en/download/package-manager

October 2017 OnRISC IoT Manual 9

http://www.mosca.io
https://nodejs.org/en/download/package-manager

2 IoT Related Protocols

[2017 -09 -13 T15 :25:52.565Z] INFO (mosca /16765 on debian9): client connected
client: "Baltos"

[2017 -09 -13 T15 :25:52.571Z] INFO (mosca /16765 on debian9): subscribed to topic
topic: "onrisc/gpio/output /#"
qos: 1
client: "Baltos"

Let’s toggle OUT1:

onrisctool -a -0x10 -b 0x10

In reaction to this mqtt_gpio would produce following output:

Waiting for up to 10 seconds for publication of 1
on topic onrisc /gpio/input /0 for client with ClientID : Baltos
Message with token value 6 delivery confirmed
Message with delivery token 6 delivered

October 2017 OnRISC IoT Manual 10

3 IoT Programming: Node-RED

3 IoT Programming: Node-RED

Node-RED5 is a programming tool for wiring together hardware devices, APIs and online services
in new and interesting ways.

It provides a browser-based editor that makes it easy to wire together flows using the wide range
of nodes in the palette that can be deployed to its runtime in a single-click.

Initial Node-RED installation already provides a lot of useful functions like sending/receiving UD-
P/TCP packets, working with HTTP/MQTT and other protocols. The framework can also be
extended via various third-party modules (see this collection6) and as Node-RED is written around
Node.js7 you can access any Node.js modules via “function” node or create your own Node-RED
nodes8.

3.1 Installation

In Buildroot you’ll have to activate Node.js package and provide a list of required modules:

• BR2_PACKAGE_OPENSSL

• BR2_PACKAGE_NODEJS

• BR2_PACKAGE_NODEJS_MODULES_ADDITIONAL="node-red node-red-dashboard"

• BR2_PACKAGE_NODE_RED_CONTRIB_LIBONRISC

For Debian 9 perform following steps:
1. apt install -y apt-transport-https

2. echo “deb https://deb.nodesource.com/node_6.x stretch main” > /etc/apt/sources.list.d/nodesource.list

3. wget -qO- https://deb.nodesource.com/gpgkey/nodesource.gpg.key | apt-key add -

4. apt update

5. apt install -y nodejs

6. npm install -g node-red node-red-dashboard

7. install libonrisc Node.js and Node-RED bindings as explained on respective GitHub pages9

5https://nodered.org
6https://flows.nodered.org/
7https://nodejs.org/en/
8https://nodered.org/docs/creating-nodes/
9https://github.com/visionsystemsgmbh/libonrisc and https://github.com/visionsystemsgmbh/node-red-contrib-
libonrisc

October 2017 OnRISC IoT Manual 11

https://nodered.org
https://flows.nodered.org/
https://nodejs.org/en/
https://nodered.org/docs/creating-nodes/
https://github.com/visionsystemsgmbh/libonrisc
https://github.com/visionsystemsgmbh/node-red-contrib-libonrisc
https://github.com/visionsystemsgmbh/node-red-contrib-libonrisc

3 IoT Programming: Node-RED

3.2 Example: Connect WLAN switch to a User LED

This introductory example shows how to use Node-RED editor and create a simple flow connecting
WLAN switch to a User LED (green LED on Baltos LED tower). This example will work only
with Baltos iR5221/3220 devices.

Start Node-RED process:

node-red

We assume that Baltos has its default IP address 192.168.254.254. As soon as you can see the
output shown below, you can point your browser to http://192.168.254.254:1880/.
Welcome to Node -RED
===================

15 Sep 08:53:43 - [info] Node -RED version: v0 .17.5
15 Sep 08:53:43 - [info] Node.js version: v6 .11.3
15 Sep 08:53:43 - [info] Linux 3.18.32 arm LE
15 Sep 08:53:47 - [info] Loading palette nodes
15 Sep 08:54:05 - [info] Dashboard version 2.4.3 started at /ui
15 Sep 08:54:07 - [info] Settings file : /root/.node -red/settings.js
15 Sep 08:54:07 - [info] User directory : /root/.node -red
15 Sep 08:54:07 - [info] Flows file : /root/.node -red/flows_onrisc.json
15 Sep 08:54:07 - [info] Server now running at http ://127.0.0.1:1880/
15 Sep 08:54:07 - [info] Starting flows
15 Sep 08:54:08 - [info] Started flows

Scroll the Node’s panel till you find “libonrisc” section (see Figure 3 on page 12). With left mouse
button pressed drag at first “onrisc wlan sw” node and then “onrisc led” node. Now find the
“output” section and drag the “debug” node. Connect all three nodes as shown in Figure 4 on page
13.

Figure 3: Node-RED: libonrisc Nodes

Perform a double-click on the “onrisc-wlan-sw” node. Specify “Name” as “WLAN switch” and
“Rate” as 1000 (the value is in milliseconds). Click on “Done” to finish editing node. Now perform

October 2017 OnRISC IoT Manual 12

3 IoT Programming: Node-RED

Figure 4: Node-RED: WLAN switch and LED: Initial Scheme

Figure 5: Node-RED: WLAN switch and LED: Configured Scheme

a double-click on the “onrisc-led” node and specify “Name” as “Green LED” and select “App” in
the LED drop-down list. Click on “Done”. You’ll get following flow (see Figure 5 on page 13).

Click on “Deploy” button in the upper right corner to start the flow. Clicking on “Debug” tab
in the upper right corner will show messages produced by the “debug” node. Below you can see
two messages received with one second difference. This is the reading rate we configured in the
“onrisc-wlan-sw” node.

10/10/2017 , 11:21:36 AMnode : 7 bb06521 .99 decc
msg. payload : number
0
10/10/2017 , 11:21:37 AMnode : 7 bb06521 .99 decc
msg. payload : number
0

Now toggle Baltos WLAN switch and you’ll see the green LED turning on and off depending on
the switch position.

3.3 Example: GPIO Access via Modbus/TCP

In this example you’ll learn Node-RED’s dashboard10 feature, that allows you to create GUI. It will
also show how to use Modbus11 in Node-RED. We will need a modbusgpio daemon (see Section
“GPIO over Modbus/TCP” in the User Manual) and hence this example will work only in Debian.
Perform following actions:

1. cd /usr/src/

2. git clone https://github.com/visionsystemsgmbh/programming_examples.git

3. cp programming_examples/node-red/gpio.json /root/.node-red/flows_onrisc.json

4. npm install -g --unsafe-perm node-red-contrib-modbus

10https://github.com/node-red/node-red-dashboard
11https://github.com/biancode/node-red-contrib-modbus

October 2017 OnRISC IoT Manual 13

https://github.com/node-red/node-red-dashboard
https://github.com/biancode/node-red-contrib-modbus

3 IoT Programming: Node-RED

5. modbusgpio 502&

6. node-red

Point your browser to http://192.168.254.254:1880/. You’ll see the flow chart as shown in Figure 6
on page 14. Now open a new tab in your browser and point it to http://192.168.254.254:1880/ui/#/0
to see the dashboard as shown in Figure 7 on page 15. You can click on the switches to change
the digital output state and if you connect INs with OUTs via 4,7k resistors, you’ll see, how digital
inputs get changed accordingly.

Let’s look at Modbus related nodes. Double-click on the “output0” node and you’ll see configuration
panel as shown in Figure 8 on page 15. As one can see we write the incoming value to toggle a
single coil at address 4. This is OUT0 on Baltos. “baltoslocal” describes the network connection
to a Modbus/TCP server (see Figure 9 on page 16). In this case the server is on the Baltos itself
so we can reach it via 127.0.0.1 address.

Double-click on the “input1” node will show “Modbus Read” node (see Figure 10 on page 16). We
read 4 input status bits from address 0, i.e. IN0..IN3 on the Baltos green connector. Reading rate
1 second. This node returns an array with true or false values. In order to show single inputs we
need a function node “modbus2bin”, that converts the array to binary output.

The dashboard consists of one tab “Baltos Modbus GPIO Example” and two groups “Inputs” and
“Outputs”. The “switch” nodes toggle digital outputs and the “text” nodes show input state and
are assigned to the related group.

Figure 6: Node-RED: Modbus/GPIO Example Flow Chart

October 2017 OnRISC IoT Manual 14

3 IoT Programming: Node-RED

Figure 7: Node-RED Modbus/GPIO Example Dashboard

Figure 8: Node-RED: Modbus Write Node

October 2017 OnRISC IoT Manual 15

3 IoT Programming: Node-RED

Figure 9: Node-RED: Modbus Client Configuration

Figure 10: Node-RED: Modbus Read

October 2017 OnRISC IoT Manual 16

3 IoT Programming: Node-RED

Figure 11: Node-RED: modbus2bin Function

October 2017 OnRISC IoT Manual 17

	1 Introduction
	2 IoT Related Protocols
	2.1 MQTT
	2.1.1 Installation
	2.1.2 Example: mqtt_gpio

	3 IoT Programming: Node-RED
	3.1 Installation
	3.2 Example: Connect WLAN switch to a User LED
	3.3 Example: GPIO Access via Modbus/TCP

