
OnRISC
User Manual
Edition: May 2022Edition: May 2022Edition: May 2022Edition: May 2022Edition: May 2022Edition: May 2022Edition: May 2022Edition: May 2022Edition: May 2022Edition: May 2022Edition: May 2022Edition: May 2022Edition: May 2022Edition: May 2022Edition: May 2022Edition: May 2022Edition: May 2022

Vision Systems GmbH
Tel: +49 40 528 401 0
Fax: +49 40 528 401 99
Web: www.visionsystems.de
Support: faq.visionsystems.de

http://www.visionsystems.de
http://faq.visionsystems.de

The software described in this manual is furnished under a license agreement and may be used
only in accordance with the terms of that agreement.

Copyright Notice

Copyright © 2009-2022 Vision Systems. All rights reserved. Reproduction without permission is
prohibited.

Trademarks

VScom is a registered trademark of Vision Systems GmbH. All other trademarks and brands are
property of their rightful owners.

Disclaimer

Vision Systems reserves the right to make changes and improvements to its product without pro-
viding notice.

Vision Systems provides this document “as is”, without warranty of any kind, either expressed or
implied, including, but not limited to, its particular purpose. Vision Systems reserves the right
to make improvements and/or changes to this manual, or to the products and/or the programs
described in this manual, at any time.

Information provided in this manual is intended to be accurate and reliable. However, Vision
Systems assumes no responsibility for its use, or for any infringements on the rights of third parties
that may result from its use.

This product might include unintentional technical or typographical errors. Changes are period-
ically made to the information herein to correct such errors, and these changes are incorporated
into new editions of the publication.

May 2022 OnRISC User Manual 2

Contents

Contents

1. Introduction 9
1.1. OnRISC Family . 9
1.2. How to Read the Manual? . 9

2. Getting Started 13
2.1. Connect to OnRISC via Serial Link . 13
2.2. Terminal Type . 13
2.3. Configure Network . 14

2.3.1. Legacy Configuration . 14
2.3.2. Configuration via systemd-networkd . 15

3. Supported Linux Distributions 16
3.1. Debian . 16
3.2. Buildroot . 16
3.3. Yocto . 16
3.4. OpenWrt . 17
3.5. Distribution Choice . 17

4. Software Configuration 18
4.1. Init System . 18
4.2. Boot Device Sequence . 18

4.2.1. “Emergency” Jumper . 18
4.2.2. Booting from SD/microSD-card . 18
4.2.3. Booting from NAND . 19
4.2.4. Booting from USB . 20

4.3. Swapping and Logging . 20
4.4. Activating and Deactivating Services . 20
4.5. System Image . 21

4.5.1. Program Overview . 21

5. Network Services and Tools Provided by OnRISC 22
5.1. LAN Configuration . 22

5.1.1. Baltos . 22
5.2. WLAN Configuration . 24

5.2.1. Regulatory Domains . 24
5.2.2. Managed Wireless Network (Wpa_supplicant) 24
5.2.3. Ad-hoc Wireless Network . 24
5.2.4. Supported WLAN Hardware . 26

5.3. GSM Support . 27
5.3.1. PPP . 27
5.3.2. ModemManager . 28
5.3.3. Disabling PIN Request . 30
5.3.4. Connect Modem On Startup . 30
5.3.5. Controlling a Modem with Python . 31

5.4. Remote VPN Access with viaVPN . 31
5.5. GPS . 31

5.5.1. GPS Device Setup . 32
5.5.2. Reading Raw GPS Data . 32

May 2022 OnRISC User Manual 3

Contents

5.5.3. gpsd . 32
5.6. SSH . 33
5.7. RFC2217 . 33
5.8. Socketcand . 34
5.9. GPIO over Modbus/TCP . 34

6. Software Development 37
6.1. Environment . 37

6.1.1. Compile your software directly on the OnRISC 37
6.1.2. Cross-compile your software on the PC . 37

6.2. Linux Kernel . 39
6.2.1. Getting Source Code . 39
6.2.2. Install Kernel Modules . 39
6.2.3. Creating Kernel *.deb Package from Binary Files 39
6.2.4. Creating a Standard Kernel *.deb Package 40

6.3. Bootloader . 41
6.3.1. U-Boot . 41
6.3.2. Barebox . 41

6.4. Other Programming Languages Than C/C++ . 42
6.5. Recommended Books . 42

7. OnRISC Hardware API 43
7.1. libonrisc . 43
7.2. Digital I/O . 44

7.2.1. Baltos iR 5221/3220 . 44
7.2.2. Baltos 1080 . 44

7.3. mPCIe On/Off Switching . 45
7.4. Serial Interfaces . 45

7.4.1. RS422/RS485 and GND Connection . 45
7.4.2. RS Mode Switching . 46
7.4.3. FTDI Based UARTs . 46
7.4.4. 16C750 Based UARTs . 46

7.5. CAN . 49
7.5.1. CAN Interface Configuration . 49
7.5.2. CAN Usage Examples . 49
7.5.3. CANopen . 49
7.5.4. J1939 . 49

7.6. I2C . 50
7.7. Watchdog Timer . 50
7.8. Read Hardware Parameters like MAC Address, Serial Number etc. 52
7.9. Built-in Touchscreen Calibration (VS-860 Only) . 52

8. Debian BSPs 53
8.1. ELBE . 53
8.2. vsdebootstrap . 53

9. Buildroot 53
9.1. Build Host Requirements . 54
9.2. Downloading . 54
9.3. BSP Structure . 54

May 2022 OnRISC User Manual 4

Contents

9.4. Building the Image . 55
9.5. Copying the Created Image to the System . 55

9.5.1. SD/microSD-card . 55
9.5.2. NAND . 56

9.6. Customizing the Image . 57
9.7. Compiling Your Own Software . 57
9.8. Setup SSH Server . 59
9.9. Getting Help . 59

10.Yocto 60
10.1. Downloading . 60
10.2. Build Configuration . 60
10.3. Meta-baltos Structure . 61

11.OpenWrt 62
11.1. BSP Structure . 62
11.2. Initial Setup . 62
11.3. Accessing Web Interface . 62
11.4. Installing OpenWrt to NAND . 62

12.IoT 64
12.1. IoT Related Protocols . 64

12.1.1. MQTT . 64
12.2. IoT Programming: Node-RED . 67

A. Debian Maintenance Notes 70
A.1. Debian Package Management . 70

B. onrisctool 71
B.1. Configure Serial Interfaces . 71
B.2. Configuring Digital I/O . 71
B.3. Configuring LEDs . 72
B.4. Get EEPROM Info . 73
B.5. Setting LAN MACs from EEPROM . 73
B.6. Controlling mPCIe Slot . 73

C. hwtest-qt 74
C.1. Controller Area Network Test . 74
C.2. UART Test . 74
C.3. Network Test . 74
C.4. RTC Test . 74
C.5. WLAN Test . 74
C.6. Bluetooth Test . 75
C.7. Disk Test . 75
C.8. Touch Test . 75
C.9. Button Test . 75
C.10.Audio Test . 75
C.11.Modem Test . 75

May 2022 OnRISC User Manual 5

Contents

D. Managing System Images 76
D.1. Flashing System Images . 76

D.1.1. Windows . 76
D.1.2. Linux . 77

D.2. Working with Partitions . 77

E. Frequently Asked Questions (FAQ) 78

F. Licensing Information 79
F.1. GNU GENERAL PUBLIC LICENSE . 79
F.2. GNU LESSER GENERAL PUBLIC LICENSE . 84

Index 93

May 2022 OnRISC User Manual 6

List of Figures

List of Figures

1. iR 5221 LAN Configuration . 23
2. QModBus: Baltos iR 5221: Set OUT2 to High . 36
3. QModBus: Baltos iR 5221: Get all GPIOs . 36
4. Watchdog Timer Support . 51
5. OpenWrt: Install to Flash . 63
6. Baltos as IoT Router . 64
7. MQTT Scheme . 65
8. Node-RED: Modbus/GPIO Example Flow Chart . 69
9. Node-RED Modbus/GPIO Example Dashboard . 69
10. Baltos: Digital I/O Mapping . 72
11. Win32 Disk Imager . 76

May 2022 OnRISC User Manual 7

List of Tables

List of Tables

1. OnRISC Products Based on OMAP3 am335x SoC 10
2. OnRISC Products Based on OMAP3 am335x SoC 11
3. OnRISC Products Based on OMAP3 am3517 SoC 12
4. Supported WLAN Hardware . 26
5. Supported Modems . 27
6. Huawei MU609 Blink Codes . 27
7. Function Codes Modbus/TCP for Digital-I/O . 35
8. Mapping Modbus addresses to Input-/Output-signals for Baltos 1080 35
9. Mapping Modbus addresses to Input-/Output-signals for Baltos 5221/3220 35
10. Used UARTs . 45
11. Serial Modes (hardware switching for Baltos iR 5221/3220 and VS-860 only) 46
12. Watchdog Timer IOCTLs . 50
13. MQTT Scheme . 65
14. Serial Modes (Software switching) . 71
15. GPIO Parameters . 72
16. LED Names . 72
17. LED Functions . 73

May 2022 OnRISC User Manual 8

1 Introduction

1. Introduction

1.1. OnRISC Family

The OnRISC is an ARM-based RISC industrial embedded computer family. The great variety of
interfaces like LAN, CFast, microSD/SD, USB, CAN, I2C, serial interface, and digital I/O makes
it easy to connect various industrial devices to the OnRISC. Some new OnRISC devices provide
graphical display (VS-860 has built-in 8” LCD display).

Compact dimensions and DIN Rail mounting capability make the OnRISC to a space saving and
flexible mounting industrial computer. It is feasible to be installed even in space limited environ-
ments.

Due to RISC based architecture, the OnRISC has very small power consumption, so fanless heat
dissipation is possible. Working in an extended temperature range, the OnRISC can be used under
harsh industrial conditions. Therefore the OnRISC is downright designed for industrial automation.
Refer to the Hardware Manual for exact characteristics.

The embedded computer runs full-featured Debian GNU/Linux on ARM operating system. With
Debian’s repository database it is easy to install and update the free software on the OnRISC. The
OnRISC is capable to act directly as a software development host, Web, Mail, Print and Database
server or as a desktop computer with the X11 window manager and many more.

1.2. How to Read the Manual?

Hardware Manual should be consulted first to understand, how the device is going to be powered.
Section Getting Started will get you from power on till log on and basic network configuration. Sec-
tion Debian Maintenance Notes describes how to search/install/remove Debian packages. Section
Network Services and Tools Provided by OnRISC shows how to set up various network services
like SSH, ser2net, socketcand, etc.

Software development related sections are spread over the manual and touching different aspects
of embedded software development for OnRISC devices. Section Software Development gives step-
by-step instructions, how to set up a development environment, get source code for the Linux
kernel, etc. Section OnRISC Hardware API gives an overview of hardware interfaces and how they
can be accessed in software. Section Recommended Books provides a list of books about Linux
administration and programming.

Sections Buildroot, Yocto and OpenWrt introduce other embedded Linux distributions built from
scratch, that can be used instead of Debian.

May 2022 OnRISC User Manual 9

1
Introduction

OnRISC Model Baltos iR 5221
Baltos iR 3220

Baltos iR 2110 Baltos 1080

CPU AM335x (ARM Cortex-A8) AM335x (ARM Cortex-A8) AM335x (ARM Cortex-A8)
RAM 256MB DDR3 256MB DDR3 256MB DDR3
Flash Memory on Board 256MB NAND 256MB NAND 256MB NAND
Serial Interfaces 2 x RS232/RS422/RS485

(16C750)
1 x RS232/RS422/RS485
(16C750)

8 x RS232 (FTDI)

CAN Interface on board up to 1 x N.A. N.A.
Digital I/O channels 4 x inputs, 4 x outputs N.A. 8 x inputs, 8 x outputs
CFast slot N.A. N.A. N.A.
SD-Slot 1 x external slot 1 x external microSD-slot 1 x internal microSD-slot
USB 2 x USB 2.0 as Host, up to 1 x

as OTG
1 x USB 2.0 as Host N.A.

Expansion Slot Mini PCI Express N.A. N.A.
Ethernet 1 x Gbit, up to 4 x 100Mbit

switch
1 x Gbit, 1 x 100Mbit 1 x Gbit (WAN)

I2C bus 1 x N.A. N.A.
RTC 1 x 1 x 1 x
Watchdog Timer 1 x 1 x 1 x
Display N.A. N.A. N.A.

Table 1: OnRISC Products Based on OMAP3 am335x SoC

M
ay

2022
O
nR

ISC
U
ser

M
anual

10

http://www.visionsystems.de/produkte/6830.html
http://www.visionsystems.de/produkte/6831.html
http://www.visionsystems.de/produkte/baltos-ir-2110.html
http://www.visionsystems.de/produkte/baltos-1080.html
http://www.ti.com/product/am3358
http://www.ti.com/product/am3358
http://www.ti.com/product/am3358

1
Introduction

OnRISC Model OnRISC 113
OnRISC 213

OnRISC 413
OnRISC 813

OnRISC CAN

CPU AM335x (ARM Cortex-A8) AM335x (ARM Cortex-A8) AM335x (ARM Cortex-A8)
RAM 256MB DDR3 256MB DDR3 256MB DDR3
Flash Memory on Board 256MB NAND 256MB NAND 256MB NAND
Serial Interfaces up to 2 x RS232/RS422/RS485

(16C750)
up to 8 x
RS232/RS422/RS485 (FTDI)

N.A.

CAN Interface on board N.A. N.A. 1 x
Digital I/O channels N.A. N.A. N.A.
CFast slot N.A. N.A. N.A.
SD-Slot 1 x internal microSD-slot 1 x internal microSD-slot 1 x internal microSD-slot
USB 1 x USB 2.0 as Host 1 x USB 2.0 as Host 1 x USB 2.0 as Host
Expansion Slot N.A. N.A. N.A.
Ethernet 1 x Gbit (WAN) 1 x Gbit (WAN) 1 x Gbit (WAN)
I2C bus N.A. N.A. N.A.
RTC 1 x 1 x 1 x
Watchdog Timer 1 x 1 x 1 x
Display N.A. N.A. N.A.

Table 2: OnRISC Products Based on OMAP3 am335x SoC

M
ay

2022
O
nR

ISC
U
ser

M
anual

11

http://www.visionsystems.de/produkte/netcom-plus-113.html
http://www.visionsystems.de/produkte/netcom-plus-213.html
http://www.visionsystems.de/produkte/netcom-plus-413.html
http://www.visionsystems.de/produkte/netcom-plus-813.html
http://www.visionsystems.de/produkte/netcan-plus-110-netcan-plus-120-wlan.html
http://www.ti.com/product/am3358
http://www.ti.com/product/am3358
http://www.ti.com/product/am3358

1
Introduction

OnRISC Model VS-860
CPU AM3517 (ARM Cortex-A8)
RAM 256MB DDR2
Flash Memory on Board 256MB NAND
Serial Interfaces 2 x RS232/RS422/RS485

(FTDI)
CAN Interface on board 1 x
Digital I/O channels N.A.
CFast slot 1 x
SD-Slot 1 x external slot
USB 2 x USB 2.0 as Host, 1 x as

OTG
Expansion Slot Mini PCI Express
Ethernet 2 x
I2C bus N.A.
RTC 1 x
Watchdog Timer 1 x
Display built in LCD

Table 3: OnRISC Products Based on OMAP3 am3517 SoC

M
ay

2022
O
nR

ISC
U
ser

M
anual

12

http://www.visionsystems.de/produkte/vs-860-risc-based-touch-panel-pc.html
http://www.ti.com/product/am3517

2 Getting Started

2. Getting Started

2.1. Connect to OnRISC via Serial Link

Connect the OnRISC to the serial port of your PC and start a terminal software (HyperTerminal,
ZOC1, minicom etc) with 115200,8,n,1 settings (no hardware/software handshake is needed. Set
the terminal type according to Section 2.2). Insert a SD/microSD-card with a preinstalled system
(refer to Section 4). Power your OnRISC according to the Hardware Manual. You’ll see Linux
booting. After the boot procedure you’ll be asked to log in. As only super user (root) is available
use following credentials to login:
Debian login: root
Password: linux

2.2. Terminal Type

Terminal type is defined in the environment variable TERM and is set to TERM=linux by default.
The terminal type of your terminal application (HyperTerminal, ZOC, minicom etc.) should be
set to the same type to interact correctly with the OnRISC console. If linux terminal type is
not available in your software, vt100 can be used instead. To do this add following line to the
~/.bashrc:

export TERM=vt100

1www.emtec.com

May 2022 OnRISC User Manual 13

www.emtec.com

2 Getting Started

2.3. Configure Network

2.3.1. Legacy Configuration

Network interfaces can be configured by editing /etc/network/interfaces. The IP addresses
for eth0, eth1 and wlan02 are statically assigned by default (see the Listing below). Please refer
to Section 5.1 for detailed hardware network interface mapping, i.e. what network device name
corresponds to what physical connector.

This f i l e d e s c r i b e s the network i n t e r f a c e s a v a i l a b l e on your system
and how to a c t i v a t e them . For more in format ion , s ee i n t e r f a c e s (5) .

The loopback network i n t e r f a c e
auto l o
i f a c e l o i n e t loopback

The primary network i n t e r f a c e
auto eth0
i f a c e eth0 i n e t s t a t i c

address 192 . 168 . 254 . 254
netmask 255 . 255 . 255 . 0

The secondary network i n t e r f a c e
auto eth1
i f a c e eth1 i n e t s t a t i c

address 192 . 168 . 253 . 254
netmask 255 . 255 . 255 . 0

The w i r e l e s s i n t e r f a c e
#auto wlan0
i f a c e wlan0 i n e t s t a t i c

address 192 . 168 . 127 . 254
netmask 255 . 255 . 255 . 0
wpa−d r i v e r nl80211
wpa−conf / e t c /wpa_supplicant . conf

Listing 1: /etc/network/interfaces

The wireless interface wlan0 will be configured with the wpa_supplicant utility (see Section 5.2).

Setup gateway and DNS server Assuming your router has IP address 192.168.254.1 the OnRISC
will be configured in the following way:

1. change eth1 section of /etc/network/interfaces file
auto eth1
iface eth1 inet static
address 192.168.254.254
netmask 255.255.255.0
gateway 192.168.254.1

2. insert following line to the /etc/resolv.conf3

nameserver 192.168.254.1

2to activate wlan0 uncomment the #auto wlan0 line in /etc/networking/interfaces
3see man resolv.conf for explanations

May 2022 OnRISC User Manual 14

2 Getting Started

3. execute /etc/init.d/networking restart

2.3.2. Configuration via systemd-networkd

systemd-networkd4 is systemd’s network configuration service. It is disabled by default and can
be started with following commands:

systemctl enable systemd -networkd
systemctl start systemd -networkd
systemctl enable systemd -resolved
systemctl start systemd -resolved
echo "nameserver 127.0.0.53" > /etc/resolv.conf

Following example shows how to configure eth1 to get IP address via DHCP. In this case systemd-networkd
will also take care of eth1 link state, i.e. if you replug the network cable systemd-networkd will
automatically restart DHCP client. Create /etc/systemd/network/eth.network wit this con-
tent:

[Match]
Name=eth1
[Network]
DHCP=yes

Now restart systemd-networkd:

systemctl restart systemd-networkd

DNS name resolution will be handled by systemd-resolved.service5. The example above shows
how to use this service together with /etc/resolv.conf file. The service will be configured via
/etc/systemd/resolved.conf6 file. In this configuration file you can for example configure, which
DNS servers will be configured in cases where no DNS server information is supplied. To disable
automatic configuration of the fallback DNS servers you must uncomment the line with FallbackDNS
and leave the list empty:

FallbackDNS=

See Arch-Linux wiki7 for more examples.

4https://www.freedesktop.org/software/systemd/man/systemd-networkd.html
5https://www.freedesktop.org/software/systemd/man/systemd-resolved.service.html
6https://www.freedesktop.org/software/systemd/man/resolved.conf.html
7https://wiki.archlinux.org/index.php/Systemd-networkd

May 2022 OnRISC User Manual 15

https://www.freedesktop.org/software/systemd/man/systemd-networkd.html
https://www.freedesktop.org/software/systemd/man/systemd-resolved.service.html
https://www.freedesktop.org/software/systemd/man/resolved.conf.html
https://wiki.archlinux.org/index.php/Systemd-networkd

3 Supported Linux Distributions

3. Supported Linux Distributions

Following Linux distributions are provided for OnRISC devices:

• Debian

• Buildroot

• Yocto

• OpenWrt

Each distribution has its own advantages and disadvantages, so one has to consider, what properties
are important for the project in question8. Below you’ll find comparison of these distributions and
suggestions for bringing your project on OnRISC.

3.1. Debian

Debian is well known and established Linux distribution in the desktop/server world. So working
with its ARM port doesn’t really differ from working with your PC. Debian for ARM provides the
same packages and tools. So it is best suited to start developing your software with it. Open Source
dependency installation from Debian repositories is very fast and can be done at any time. And if
you design your software to create a *.deb package, you’ll get an update mechanism right away. But
this flexibility has its price: your root file system exceeds the size of 1GB very quickly depending on
required software dependencies (libraries, frameworks). This makes it almost unsuitable for NAND
flash based projects.

3.2. Buildroot

Buildroot is a set of Makefiles and patches, that compiles root file system from scratch. So initial
stage can take more than hour to compile depending on hardware setup of your PC. Buildroot
doesn’t provide binary package management system like Debian, so adding new packages will
require rewriting root file system on target medium (NAND or SD/microSD-card) again. But
particularly this approach leads to relative small core system. Depending on what software de-
pendencies your software has, you can get an initramfs image (kernel and rootfs) of about 10MB.
Such approach makes firmware update procedure quite straight forward: start the system and just
replace kernel-fit.itb. That’s all.

3.3. Yocto

Yocto is also a set of Makefiles and patches, that compiles root file system from scratch. But
compared to Buildroot it also creates re-distributable binary packages (rpm ,deb), so that one can
easily update a rootfs in production.

8These slides provided by Mind compare Debian and Buildroot as embedded Linux distributions:
https://www.yumpu.com/en/document/view/39437530/presentation-emdedded-distro-shootout-buildroot-
vs-debian-mind

May 2022 OnRISC User Manual 16

https://www.yumpu.com/en/document/view/39437530/presentation-emdedded-distro-shootout-buildroot-vs-debian-mind
https://www.yumpu.com/en/document/view/39437530/presentation-emdedded-distro-shootout-buildroot-vs-debian-mind

3 Supported Linux Distributions

3.4. OpenWrt

OpenWrt is network agnostic embedded Linux OS, that will be built from scratch as Buildroot and
Yocto do. Compared to the above mentioned Linux distributions OpenWrt is based around a web
interface and related infrastructure and will be often used in routers and other network related
devices.

3.5. Distribution Choice

First of all a decision must be made, what medium to use NAND flash or SD/microSD-card. If
NAND flash, then Buildroot, Yocto or OpenWrt are the right choices. For SD/microSD-card you
still have alternative and other factors play role. But regardless of distribution choice, it is easier to
start developing with Debian. Because you can experiment with different libraries/frameworks and
so determine required set of software dependencies. This set can then be used either to configure
Buildroot, Yocto, OpenWrt or Debian BSPs (script, that creates custom Debian root file system
on your host PC).

May 2022 OnRISC User Manual 17

4 Software Configuration

4. Software Configuration

The OnRISC comes with a preinstalled Debian GNU/Linux on ARM9 operating system. The
system image (see Section 4.5), that can be either downloaded or obtained as part of the Starter
kit, provides necessary tools and services to start with application development, various services
such as ssh, RFC2217 etc.

This image can be downloaded from our FTP server10 and can then be copied to the SD/microSD-
card as described in Appendix D.1.

4.1. Init System

Debian uses systemd11 as the default init system. systemd differs in many points from System
V like init system, but it maintains a compatibility layer so that legacy start-up scripts still can
be used. For example, you can still configure network interfaces via /etc/network/interfaces
(default for our Debian image), but the new approach is to remove /etc/network/interfaces and
configure the network via networkd (refer to Section 2.3.2).

4.2. Boot Device Sequence

Baltos systems will first check NAND device, if it contains a valid boot image, i.e. the first NAND
partition is not empty. If the first partition is not empty, the system starts bootloader from NAND,
if it is empty, MMC device will be searched for MLO file. Regardless of what device has started
the bootloader, the final decision where to start the kernel from, will be taken by the bootloader’s
script.

4.2.1. “Emergency” Jumper

Baltos devices provide an “emergency” jumper JP1 close to the SODIMM module. If it is set, the
system will ignore NAND and boot from MMC directly. Power off the system before setting or
removing this jumper as it won’t be evaluated by the SoC otherwise.

4.2.2. Booting from SD/microSD-card

The system images for OMAP3 based devices have two partitions:

1. FAT partition having files need to initialize and boot the system (MLO, u-boot.img, uEnv.txt
and uImage or kernel-fit.itb). This partition must have bootable flag set

2. ext4 partition having Debian root file system

The OMAP CPU automatically loads SPL12 (x-loader/MLO) from the FAT partition and then the
code in SPL takes over and loads U-Boot13 (u-boot.img), that takes care of Linux kernel (uImage
or kernel-fit.itb).

9http://www.debian.org/ports/arm/
10ftp://ftp.visionsystems.de/pub/multiio/OnRISC/Baltos/
11https://en.wikipedia.org/wiki/Systemd
12Secondary Program Loader
13http://www.denx.de/wiki/U-Boot

May 2022 OnRISC User Manual 18

http://www.debian.org/ports/arm/
ftp://ftp.visionsystems.de/pub/multiio/OnRISC/Baltos/
https://en.wikipedia.org/wiki/Systemd
http://en.wikipedia.org/wiki/Secondary_Program_Loader
http://www.denx.de/wiki/U-Boot

4 Software Configuration

4.2.3. Booting from NAND

Baltos has following NAND partitions:

#define MTDPARTS_DEFAULT "mtdparts=omap2−nand . 0 : 1 2 8 k (SPL) , " \
" 128k (SPL . backup1) , " \
" 128k (SPL . backup2) , " \
" 128k (SPL . backup3) , " \
" 1920k (u−boot) , " \
"−(UBI) "

Listing 2: NAND Partition Table

#define NANDARGS \
" mtdids=" MTDIDS_DEFAULT " \0 " \
" mtdparts=" MTDPARTS_DEFAULT " \0 " \
" nandargs=setenv ␣ bootargs ␣ conso l e=${ conso l e }␣ " \

" ${ optargs }␣ " \
" ${mtdparts }␣ " \
" root=${nandroot }␣ " \
" r o o t f s t yp e=${ nandroot f s type }\0 " \

" nandroot=ubi0 : r o o t f s ␣rw␣ubi .mtd=5\0 " \
" nandroot f s type=ub i f s ␣ rootwa i t=1\0 " \
" nandboot=echo␣Booting␣ from␣nand␣ . . . ; ␣ " \

" run␣nandargs ; ␣ " \
" setenv ␣ loadaddr ␣0x81000000 ; ␣ " \
" ubi ␣ part ␣UBI ; ␣ " \
" ubifsmount ␣ubi0 : k e rne l ; ␣ " \
" ub i f s l o ad ␣ $loadaddr ␣ kerne l− f i t . i t b ; " \
" ubifsumount ; ␣ " \
" bootm␣$loadaddr \0 "

Listing 3: U-Boot: NAND Settings

Partitions SPL - SPL.backup3 have the same MLO as on the SD/microSD-card, u-boot holds U-
Boot, UBI MTD partition holds further UBIFS14 formatted partitions like kernel and rootfs (see
Section 9.5.2 for details).

14http://en.wikipedia.org/wiki/UBIFS

May 2022 OnRISC User Manual 19

http://en.wikipedia.org/wiki/UBIFS

4 Software Configuration

4.2.4. Booting from USB

Baltos doesn’t support direct booting from USB, but the bootloader started from either MMC or
NAND is configured to search for a USB drive and check whether it is bootable. U-Boot checks for
uEnv.txt file and barebox searches for kernel-fit.itb. As long as you don’t use a kernel with
embedded initramfs, you will have to make sure it has all needed USB drivers compiled in:

CONFIG_USB_STORAGE
CONFIG_USB_MUSB_HDRC
CONFIG_USB_MUSB_DSPS
CONFIG_AM335X_PHY_USB

You’ll need to perform the following actions to start our Debian image from a USB drive:

1. prepare kernel as explained above

2. burn Debian image on the USB drive (see Section Section D.1 for the reference)

3. mount second (ext4) partition and copy prepared kernel-fit.itb and extract modules.tar

4. mount first (FAT) partition and change uEnv.txt to the content shown below (skip this step,
if you’re using barebox bootloader)

bootcmd=setenv loadaddr 0x82000000; run usbargs; ext4load usb 0:2 ${loadaddr} boot/kernel-fit.itb; bootm
${loadaddr}#conf${board_name}; if test $? -ne 0; then echo "Using default FIT configuration"; bootm
${loadaddr}; fi;
uenvcmd=boot

4.3. Swapping and Logging

Due to the fact that the flash memory has a finite number of erase-write cycles it is very important
to reduce them. Many applications use logging for information, recovery and debugging purposes,
this can lead to frequent flash usage. There are several possibilities to avoid this:

1. use external HDD attached via USB and redirect swapping and logging to it

2. disable swapping15 (remove swap entry in the /etc/fstab) and logging where it is possible

3. redirect the log stream via network16

To receive the log messages under Linux you can use your existing syslog utility, for Windows you
can use Kiwi Syslog Daemon17 or any other Syslog daemon.

4.4. Activating and Deactivating Services

Some services will be started as daemons at system startup and hence reduce the amount of free
memory and increase the boot time. The ways to activate/deactivate services at boot time are
extensively covered in Sections System Boot and The inetd Super-Server of “The Debian Admin-
istrator’s Handbook”.

15To list swapping devices execute cat /proc/swaps
16The Debian Administrator’s Handbook
17www.kiwisyslog.com

May 2022 OnRISC User Manual 20

http://debian-handbook.info/browse/stable/unix-services.html#sect.system-boot
http://debian-handbook.info/browse/stable/sect.inetd.html
http://debian-handbook.info/browse/stable/sect.syslog.html
http://www.kiwisyslog.com

4 Software Configuration

4.5. System Image

The complete system image contains lots of programs and libraries. It contains a development
environment consisting of the gcc toolchain and vim-tiny text editor. This image was created with
vsdebootstrap (see Section 8.2 for details).

4.5.1. Program Overview

The complete image provides among others the following utilities:

• Software Development

– gcc

– CMake

– git

• Network

– ssh (server and client)

– netcat

– ser2net RFC2217 server

– socketcand

• Desktop:

– XFCE desktop

May 2022 OnRISC User Manual 21

5 Network Services and Tools Provided by OnRISC

5. Network Services and Tools Provided by OnRISC

The OnRISC can be accessed via Ethernet for remote usage and file sharing. For this purpose there
are several services such as telnet or ssh installed and preconfigured. For WLAN configuration
wpa_supplicant and iw are included in the distribution.

5.1. LAN Configuration

5.1.1. Baltos

Baltos systems have following network interfaces:

1. WAN (eth1) - all devices

2. LAN (eth0) - iR devices and VS-860

WAN is connected to a single port PHY (Atheros 8035). Linux kernel automatically shows cable
insertion/removal status on the console.

cpsw 4a100000.ethernet eth1: Link is Down

or

cpsw 4a100000.ethernet eth1: Link is Up - 1Gbps/Full - flow control off

LAN configuration differs across devices. In iR 5221/3220 devices LAN (eth0) is connected to
a switch chip (ICPlus IP175D). As shown in Figure 1 on page 23 eth0 is connected to one of
the switch ports, hence has always cable inserted status. The LAN of iR 2110 is connected to
a single port PHY (ICPlus IP101A/G) and behaves like WAN interface. The only difference is
the maximum speed of 100Mbit/s. And finally Baltos 1080, OnRISC 113/213/413/813/CAN have
WAN interface only i.e. eth1.

VLAN The network controller in Baltos systems is implemented as a switch device (CPSW). To
use both slaves as separate network interfaces special feature called Dual Emac is used. Dual Emac
uses VLAN IDs 1 and 2 to separate eth0 and eth1, hence you should not add these VLAN IDs via
vconfig or iproute2.

For example, when creating a bridge, use the following commands to avoid conflicts:

ip link add name br0 type bridge
ip link set br0 up
ip link set eth0 up
ip link set br0 type bridge vlan_default_pvid 3
ip link set eth0 master br0

If you are forced to use VLAN ID 1 and/or 2, you’ll have to change default VLAN IDs in the DTS
file corresponding to your device, recompile and install the kernel. In the Listing below you can see
the field dual_emac_res_vlan specifying default VLAN IDs. Just change 1 and 2 to for example
4093 and 4094.

May 2022 OnRISC User Manual 22

5 Network Services and Tools Provided by OnRISC

ICPlus IP175D

LAN1 LAN2 LAN3 LAN4

eth0

Figure 1: iR 5221 LAN Configuration

&cpsw_emac0 {
phy−mode = " rmi i " ;
dual_emac_res_vlan = <1>;
f ixed−l i n k {

speed = <100>;
f u l l −duplex ;

} ;
} ;

&cpsw_emac1 {
phy−mode = " rgmii−id " ;
dual_emac_res_vlan = <2>;
phy−handle = <&phy1>;

} ;
Listing 4: DTS: Dual Emac Configuration

May 2022 OnRISC User Manual 23

5 Network Services and Tools Provided by OnRISC

5.2. WLAN Configuration

Wpa_supplicant18 is a WPA Supplicant for Linux, BSD, Mac OS X, and Windows with support for
WEP, WPA and WPA2 (IEEE 802.11i / RSN). Supplicant is the IEEE 802.1X/WPA component
that is used in the client stations. It implements key negotiation with a WPA Authenticator and
it controls the roaming and IEEE 802.11 authentication/association of the WLAN driver.

Further information about configuring the WLAN interface can be taken from wpa_supplicant’s
documentation19.

5.2.1. Regulatory Domains

By default Linux kernel uses regulatory domain 00. This domain restricts some WLAN channels
(12-14). In order to comply to your country’s regulations you’ll need crda package. With this
packages installed you can set your regulatory domain using iw utility. Following command sets
regulatory domain to Germany (DE):

iw reg set DE

For other countries see this article20.

5.2.2. Managed Wireless Network (Wpa_supplicant)

Wpa_supplicant uses /etc/wpa_supplicant.conf file for its configuration (see the Listing be-
low).

WLAN interface can be automatically configured on system’s startup (see Section 2.3.1). To test
the configuration just run:

/etc/init.d/networking restart

Wpa_supplicant can also be called manually to investigate configuration problems:

wpa_supplicant -iwlan0 -c/etc/wpa_supplicant.conf -dd -Dnl80211

On a successful connection/authentication the log should show CTRL-EVENT-CONNECTED event. Fol-
lowing command reveals some AP connection statistics:

5.2.3. Ad-hoc Wireless Network

Ad-hoc connections will be managed via iw tool. Following example shows, how to connect to an
unencrypted Ad-hoc host “foo”:

iw wlan0 connect foo

To connect to a WEP encrypted host invoke:

iw wlan0 connect foo keys 0:abcde d:1:0011223344

18http://hostap.epitest.fi/wpa_supplicant/
19http://w1.fi/cgit/hostap/plain/wpa_supplicant/README
20https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

May 2022 OnRISC User Manual 24

https://wireless.wiki.kernel.org/en/users/documentation/iw
http://hostap.epitest.fi/wpa_supplicant/
http://w1.fi/cgit/hostap/plain/wpa_supplicant/README
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

5 Network Services and Tools Provided by OnRISC

ap_scan=1

no encrypt ion
network={

s s i d="TEST"
key_mgmt=NONE

}
WEP encrypt ion
network={

s s i d="TESTWEP"
key_mgmt=NONE
wep_key0=xxxxxxxxxxxxxxxxxxxxx
wep_tx_keyidx=0
auth_alg=SHARED

}
WPA/WPA2 encrypt ion
network={

s s i d="TESTWPA2"
proto=WPA RSN
key_mgmt=WPA−PSK
pa i rw i s e=CCMP TKIP
group=CCMP TKIP
psk="xxxxxxxxxxxxxx "

}

Listing 5: /etc/wpa_supplicant.conf

root@onrisc :~# iw wlan0 link
Connected to 84:ea:96:ee:6d:5e (on wlan0)

SSID: ExampleAP
freq: 2462
RX: 4449784 bytes (23438 packets)
TX: 773784 bytes (2735 packets)
signal: -76 dBm
tx bitrate: 72.2 MBit/s MCS 7 short GI

bss flags: short -preamble short -slot -time
dtim period: 3
beacon int: 100

May 2022 OnRISC User Manual 25

5
N
etwork

Services
and

Tools
Provided

by
O
nRISC

5.2.4. Supported WLAN Hardware

Model Interface Kernel Symbols Firmware (Buildroot Symbols)
Jorjin WG7833 SDIO WL18XX, WLCORE_SDIO BR2_PACKAGE_LINUX_FIRMWARE_TI_WL18XX
TP-LINK TL-WN272N V3 USB RT2800USB_RT53XX BR2_PACKAGE_LINUX_FIRMWARE_RALINK_RT2XX
SparkLAN WPER-172GN USB RT2800USB_RT53XX BR2_PACKAGE_LINUX_FIRMWARE_RALINK_RT2XX

Table 4: Supported WLAN Hardware

M
ay

2022
O
nR

ISC
U
ser

M
anual

26

5 Network Services and Tools Provided by OnRISC

5.3. GSM Support

Using the USB connector or the PCI Express Mini Card adapter described in the Hardware Manual,
you can attach a GSM card. The system was tested with the following GSM/HSPA/UMTS/LTE
cards:

Vendor Model 3G 4G GPS type Connector VID/PID
Huawei MU609 yes no passive antenna mPCIe 12d1:1573
Huawei MU709S-6 yes no none mPCIe 12d1:1c25
Huawei ME909u-521 yes yes passive antenna mPCIe 12d1:1573

Sierra Wireless AirPrime MC7304 yes yes active antenna mPCIe 1199:68c0
Sierra Wireless AirPrime WP7607 yes yes passive antenna mPCIe 1199:68c0

Quectel UC20 yes no passive antenna mPCIe 05c6:9003
SIMcom SIM5360E yes no none mPCIe 05c6:9000
SIMcom SIM7600x yes yes passive antenna mPCIe 1e0e:9001
Huawei E353 yes no none USB 12d1:1506

Table 5: Supported Modems

Please read Section 7.3. It describes, how mPCIe slot can be turned on and off.

Baltos iR5221/3220 devices provide an LED labelled “3G”. It is directly connected to the installed
modem. Hence, the information about the behaviour of this LED can be found in the modem’s
documentation. For example, Huawei MU60921 has the following blink codes:

Operating Status LED_WWAN#
No service/Restricted service Outputs: low(0.1s)-high (0.1s)-low (0.1s)-high (1.7s)

2s cycle
Register to the network Outputs: low (0.1s)-high (1.9s)

2s cycle
Dial-up successfully Outputs: low

Table 6: Huawei MU609 Blink Codes

5.3.1. PPP

Special udev rules in /etc/udev/rules.d/98-vscom.rules create /dev/atcmd0 symlink to card’s
command port, that is used in the scripts below. This allows the user to use any supported card
without changing its device name in the scripts. The following configuration files were prepared
for modem usage:

• /etc/chatscripts/gprs (your provider’s Access Point Name (APN) is stored here)

• /etc/ppp/peers/gprs

To activate a GSM connection configure proper APN and invoke

pppd file /etc/ppp/peers/gprs

You can find the supported AT command reference22 on the CD .
21“HUAWEI MU609 Mini PCIe Module: Hardware Guide” from 2013-07-24
22documentation/2130617_Supported_AT_Command_Reference-v2.4.pdf

May 2022 OnRISC User Manual 27

5 Network Services and Tools Provided by OnRISC

5.3.2. ModemManager

Starting from version 8 Debian provides ModemManager23 with QMI24/MBIM25 support. These
protocols/drivers provide higher data throughput than PPP. Below you’ll find some usage exam-
ples:

List detected modems:
mmcli -L

Found 1 modems: /org/freedesktop/ModemManager1/Modem/0 [Huawei Technologies Co., Ltd.] MU609

Show modem’s status:
mmcli -m 0
/org/freedesktop/ModemManager1/Modem/0 (device id ’4a1d302560babc0bc24d6a46e1d8c56740045b8f’)

Hardware | manufacturer: ’Huawei Technologies Co., Ltd.’
| model: ’MU609’
| revision: ’12.105.29.00.00’
| supported: ’gsm-umts’
| current: ’gsm-umts’
equipment id: ’323432046447031’
System
drivers: ’option1, cdc_ether’
plugin: ’Huawei’
primary port: ’ttyUSB2’
ports: ’ttyUSB0 (at), eth2 (net), ttyUSB2 (at), ttyUSB3 (gps), ttyUSB4 (at), ttyUSB1 (qcdm)’

Numbers | own : ’+xxxxxx’

Status | lock: ’none’
| unlock retries: ’sim-pin (3), sim-pin2 (2), sim-puk (10), sim-puk2 (10)’
| state: ’disabled’
| power state: ’on’
| access tech: ’unknown’
signal quality: ’0’ (cached)
Modes
allowed: 2g; preferred: none
allowed: 2g, 3g; preferred: none’
current: ’allowed: 2g, 3g; preferred: none’

Bands | supported: ’unknown’
| current: ’unknown’

IP | supported: ’ipv4’

3GPP | imei: ’11122222111’
| enabled locks: ’none’
| operator id: ’unknown’
| operator name: ’unknown’
| subscription: ’unknown’
registration: ’unknown’
SIM | path: ’/org/freedesktop/ModemManager1/SIM/0’

23https://www.freedesktop.org/wiki/Software/ModemManager/
24https://www.freedesktop.org/wiki/Software/libqmi/
25https://www.freedesktop.org/wiki/Software/libmbim/

May 2022 OnRISC User Manual 28

https://www.freedesktop.org/wiki/Software/ModemManager/
https://www.freedesktop.org/wiki/Software/libqmi/
https://www.freedesktop.org/wiki/Software/libmbim/

5 Network Services and Tools Provided by OnRISC

Bearers | paths: ’none’

Enable modem:
mmcli -m 0 -e
successfully enabled the modem

Show available networks:
mmcli -m 0 --3gpp-scan --timeout=300

3GPP scan | networks: 26201 - TDG (gsm, available)
| 26202 - Vodafone (lte, available)
| 26201 - TDG (umts, available)
| 26201 - TDG (lte, available)
| 26202 - Vodafone (gsm, available)
| 26202 - Vodafone (umts, available)
| 26203 - E-Plus (gsm, available)
| 26203 - E-Plus (umts, available)
| 26203 - MEDIONmobile (lte, current)

Create a simple connection:
mmcli -m 0 --simple-connect="apn=internet.eplus.de"
successfully connected the modem

After the successful connection, you can see the assigned network interface and its IP configuration
using the Bearer object. Execute mmcli -m 0 again and search for the Bearer line:

/org/freedesktop/ModemManager1/Bearer/2

Take the Bearer’s index (in the example above, it is 2) and execute the following command:
root@onr i sc : / tmp# mmcli −b 2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
General | dbus path : / org / f r e ede sk top /ModemManager1/Bearer /2

| type : d e f au l t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Status | connected : yes

| suspended : no
| i n t e r f a c e : eth2
| ip timeout : 20

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Prope r t i e s | apn : i n t e r n e t . ep lu s . de

| roaming : a l lowed
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
IPv4 con f i gu r a t i on | method : s t a t i c

| address : 1 0 . 2 08 . 6 0 . 6 5
| p r e f i x : 30
| gateway : 1 0 . 2 08 . 6 0 . 6 6
| dns : 6 2 . 1 09 . 1 21 . 1 7 , 6 2 . 1 09 . 121 . 18
| mtu : 1500

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S t a t i s t i c s | durat ion : 120

| attempts : 1
| t o ta l−durat ion : 120

Now, you can obtain an IP address using the dhclient and network interface mentioned in the
Bearer configuration (in the case of Huawei MU609, it is eth2) or assign the IP configuration
statically:
dhclient eth2

May 2022 OnRISC User Manual 29

5 Network Services and Tools Provided by OnRISC

Some modems like, for example, SIM7600 utilize the so-called “raw-ip” mode that dhclient doesn’t
support. In this case, you can use udhcpc instead:
udhcpc -i eth2

Disconnect:
mmcli -m 0 --simple-disconnect
successfully disconnected all bearers in the modem

5.3.3. Disabling PIN Request

To disable the PIN request, you have to execute the following command to discover the SIM card
path and index:

mmcli -m 0 | grep SIM

The path to the SIM card looks as follows:
SIM | path: ’/org/freedesktop/ModemManager1/SIM/0’

The number after the last slash is the SIM_INDEX (it is 0 in this case). Now execute the following
command to disable the PIN request:

mmcli --sim=SIM_INDEX --pin=PIN --disable-pin

5.3.4. Connect Modem On Startup

There are many ways to activate the modem on startup. Below, a method using incron26 will be
shown. First of all, you’ll have to install incron:

apt install incron

Open /etc/incron.allow and enter root, save and exit. Now root is allowed to perform incron
jobs. To create modem job invoke:

incrontab -e

This command will open an editor, where you will enter following line, save and exit:

/dev/ IN_CREATE /usr/local/bin/startmodem.sh

After configuring incron create /usr/local/bin/startmodem.sh with following code:

#!/bin / sh

i f [−e /dev/atcmd0] ; then
s l e e p 60
ente r PIN , i f r equ i r ed
#echo −e " at+cpin ="1234"\ r " > /dev/atcmd0
/ usr / sb in /pppd f i l e / e t c /ppp/ peer s / gprs

f i

26http://inotify.aiken.cz/?section=incron&page=about&lang=en

May 2022 OnRISC User Manual 30

http://inotify.aiken.cz/?section=incron&page=about&lang=en

5 Network Services and Tools Provided by OnRISC

Make file executable chmod +x /usr/local/bin/startmodem.sh

Now every time the system boots and mPCIe slot is activated /usr/local/bin/startmodem.sh
will be started. /usr/local/bin/startmodem.sh waits for a minute to give ModemManager time
to find the modem and then starts pppd. You can replace pppd invocation with mmcli as described
in Section 5.3.2.

5.3.5. Controlling a Modem with Python

You can write a Python script to control your modem via the ModemManager. ModemManager
can be accessed either via DBus directly or using GObject introspection for libmm. DBus reference
can be found here27. GObject introspection examples can be found in the examples folder of the
ModemManager git repository28.

5.4. Remote VPN Access with viaVPN

Sometimes it is required to access OnRISC device from a remote location via a VPN tunnel.
Depending on the network infrastructure this can be a difficult task, because at least on side of this
tunnel (VPN server) must be accessible via Internet. This requires either making a hole in your
company’s/customer’s firewall or setting up a dedicated VPN rendezvous server with a public IP
address.

Our viaVPN service provides a convenient solution for this task. It offers a complete set of soft-
ware/services to establish a VPN tunnel with no or minimal changes to your network infrastructure.
viaVPN has following components:

• rendezvous server

• viaVPN daemon for Baltos (Debian and Buildroot versions)

• a viaVPN client utility for PC (Windows and Linux versions)

Both viaVPN daemon and client utility make a VPN connection to the rendezvous server via
standard HTTPS port, so in most cases such connections are allowed by company’s firewall and
hence no changes are needed to be made by a network administrator.

In order to use the service you’ll need to make a viaVPN account and each device must be registered
and associated with this account. Please refer to the “viaVPN Daemon for Baltos” Manual for
further instructions.

5.5. GPS

You can use various devices to get GPS data. So far following devices were tested:

1. VersaLogic VL-MPEu-G2E - dedicated mPCIe card with active GPS antenna support

2. GlobalSat BU-353S4 - USB GPS mouse

3. Sierra Wireless AirPrime MC7304 - mPCIe LTE modem with active GPS antenna support

27https://www.freedesktop.org/software/ModemManager/api/latest/ref-dbus.html
28https://cgit.freedesktop.org/ModemManager/ModemManager/tree/examples

May 2022 OnRISC User Manual 31

http://www.viavpn.com
https://www.freedesktop.org/software/ModemManager/api/latest/ref-dbus.html
https://cgit.freedesktop.org/ModemManager/ModemManager/tree/examples

5 Network Services and Tools Provided by OnRISC

5.5.1. GPS Device Setup

VersaLogic VL-MPEu-G2E VL-MPEu-G2E exports /dev/ttyACM0 device. Baudrate 9600b/s:

stty -F /dev/ttyUSB0 ispeed 9600 ospeed 9600

GlobalSat BU-353S4 BU-353S4 exports /dev/ttyUSB0 device provided by pl2303 driver. Bau-
drate 4800b/s:

stty -F /dev/ttyUSB0 ispeed 4800 ospeed 4800

Sierra Wireless AirPrime MC7304 MC7304 provides GPS data on the /dev/ttyUSB1 device.
You’ll have to active the GPS port prior to reading data:

echo ’AT!GPSTRACK=1,255,100,1000,5’ > /dev/ttyUSB2
stty raw -F /dev/ttyUSB1; echo \$GPS_START >/dev/ttyUSB1

5.5.2. Reading Raw GPS Data

After configuring the required device you can just invoke cat device in order to get raw data:

cat /dev/ttyUSB0

You’ll get similar output:

$GPGSA,A,3,12,15,25,32,10„„„„3.4,2.3,2.5*33
$GPRMC,160059.000,A,5340.0274,N,00959.2111,E,0.48,38.52,090316„,A*5D
$GPGGA,160100.000,5340.0274,N,00959.2116,E,1,05,2.3,10.4,M,45.9,M„0000*61
$GPGSA,A,3,12,15,25,32,10„„„„3.4,2.3,2.5*33
$GPRMC,160100.000,A,5340.0274,N,00959.2116,E,0.47,38.52,090316„,A*58
$GPGGA,160101.000,5340.0273,N,00959.2114,E,1,04,4.1,10.5,M,45.9,M„0000*61

The meaning of these messages can be read here.

5.5.3. gpsd

gpsd project29 provides various tools to manage GPS receivers and to provide their data over
network.

gpsmon is a real-time GPS packet monitor and control utility. Execute following command to
see GPS coordinates, satellite information etc.

gpsmon /dev/ttyUSB0

gpsd is interface daemon for GPS receivers. To start a daemon in foreground and listening on
TCP port 5050 execute:

gpsd -b -G -N -S 5050 /dev/ttyUSB0

29http://www.catb.org/gpsd/

May 2022 OnRISC User Manual 32

https://en.wikipedia.org/wiki/NMEA_0183
http://www.catb.org/gpsd/

5 Network Services and Tools Provided by OnRISC

5.6. SSH

To access the OnRISC via SSH from Linux execute:

ssh root@192.168.254.254

To access OnRISC via SSH from Windows you need a ssh-client such as PuTTY30. To exchange
files several tools could be used:

• scp (Linux) - secure copy tool

• pscp (Windows) - secure copy tool included in PuTTY distribution

• WinSCP31 (Windows) - secure copy tool with graphical interface

For further information see:

man sshd

5.7. RFC2217

Internal serial interfaces of the OnRISC can be made accessible over network via RFC2217 protocol.
ser2net32 is a daemon, that provides such functionality. On the client side (PC) you need either
a virtual COM port driver or an application/library communicating RFC2217 directly. For MS
Windows OS you can use the VScom driver of NetCom Mini33.

The installation requires following components to be installed:

• RFC2217 driver and NetCom UPnP Manager (is bundled with the driver)

• vsupnpd (provided with our system images, enabled by default)

• ser2net (provided with our system images, disabled by default)

ser2net will be configured via special configuration file (default /etc/ser2net.conf). This file
contains following information:

SIGNATURE:sign_vs:VScom NetCom:111S:(C) VS Vision Systems GmbH 2010:1
5000:telnet:0:/dev/ttyS1:115200 sign_vs
5001:telnet:0:/dev/ttyS2:115200 sign_vs

SIGNATURE is a string that will be sent on RFC2217 driver’s request to identify the device. Don’t
change this setting. After that you’ll find the per serial interface configuration strings in following
format:

<TCP port>:<state>:<timeout>:<device>:<options>

In the example the /dev/ttyS1 device will be used in RFC2217 mode (telnet), listens on TCP port
5000 and the timeout function is disabled.

vsupnpd daemon parses /etc/ser2net.conf file and extracts TCP port numbers. This information
will be announced via SSDP broadcasts, so that NetCom UPnP Manager can find and install the

30http://www.chiark.greenend.org.uk/∼sgtatham/putty/
31http://winscp.net/eng/index.php
32https://sourceforge.net/projects/ser2net/
33http://www.vscom.de/download/multiio/Windows7/driver/NCMini-Install-7z.exe

May 2022 OnRISC User Manual 33

https://datatracker.ietf.org/doc/html/rfc2217
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://winscp.net/eng/index.php
https://sourceforge.net/projects/ser2net/
http://www.vscom.de/download/multiio/Windows7/driver/NCMini-Install-7z.exe

5 Network Services and Tools Provided by OnRISC

serial interfaces. If OnRISC is behind a router and broadcasts are not allowed, you can manually
add the device in the NetCom UPnP Manager. See NetCom Mini Manual for more details.

Please note that ser2net service is disabled by default. You need to activate using rcconf (see
Section 4.4).

5.8. Socketcand

socketcand is a daemon that provides access to CAN interfaces on a machine via a network inter-
face. The communication protocol uses a TCP/IP connection and a specific protocol to transfer
CAN frames and control commands. The protocol specification can be found in ./doc/protocol.md.34

The project provides Java API to develop your own client applications for socketcand. There is
also a CAN sniffer software Kayak35, that uses socketcand protocol, so that you can use OnRISC
as a network based CAN sniffer at once.

Please note that socketcand service is disabled by default. You need to activate using rcconf (see
Section 4.4).

5.9. GPIO over Modbus/TCP

Baltos GPIO can be made accessible over network via modbusgpio daemon. modbusgpio can be
invoked with following parameter:

1. TCP port number - port number modbusgpio is listening on (required parameter)

2. IP address to bind daemon to (optional parameter)

3. debug enable option (optional parameter)

Example:

modbusgpio 502 debug

This command would start modbusgpio, that listens on port 502 and also prints debug messages
on stderr.

The daemon implementation supports Discrete Inputs, Coils, Input Registers and Holding Regis-
ters. These are the most useful function codes (see Table 7 on page 35).

Mapping of addresses to Digital-I/O signals are shown in following tables:

For initial testing you can use QModBus36 software to set/get GPIO values. Figure 2 shows how
to set OUT2 to high and Figure 3 shows the result provided OUT2 is connected to IN2.

34https://github.com/linux-can/socketcand
35https://dschanoeh.github.io/Kayak/
36http://qmodbus.sourceforge.net/

May 2022 OnRISC User Manual 34

https://github.com/linux-can/socketcand
https://dschanoeh.github.io/Kayak/
http://qmodbus.sourceforge.net/

5 Network Services and Tools Provided by OnRISC

Function Decimal Code

Single bit access

Read Discrete Inputs 02
Read Coils 01

Write Single Coil 05
Write Multiple Coils 15

16 bit access

Read Holding Register 03
Read Input Register 04
Write Single Register 06

Write Multiple Registers 16

Table 7: Function Codes Modbus/TCP for Digital-I/O

Coil Address Register Address Signals Interpretation
0 .. 7 0 Input 1 .. 8 External status

0: Input open
1: Input closed

8 .. 15 Output 1 .. 8 External status
0: Connect <n> to Ö
1: Connect <n> to S

32 .. 47 2 Data Direction 0: Input signal
1: Output signal

64 .. 79 4 Direction Option 0: Changeable
1: Fixed

(80 .. 96) 6 Number of I/Os 16

Table 8: Mapping Modbus addresses to Input-/Output-signals for Baltos 1080

Coil Address Register Address Signals Interpretation
0 .. 3 0 IN0 .. IN3 External status

0: low
1: high

4 .. 7 OUT0 .. OUT3 External status
0: low
1: high

32 .. 47 2 Data Direction 0: Input signal
1: Output signal

64 .. 79 4 Direction Option 0: Changeable
1: Fixed

(80 .. 96) 6 Number of I/Os 8

Table 9: Mapping Modbus addresses to Input-/Output-signals for Baltos 5221/3220

May 2022 OnRISC User Manual 35

5 Network Services and Tools Provided by OnRISC

Figure 2: QModBus: Baltos iR 5221: Set OUT2 to High

Figure 3: QModBus: Baltos iR 5221: Get all GPIOs

May 2022 OnRISC User Manual 36

6 Software Development

6. Software Development

6.1. Environment

6.1.1. Compile your software directly on the OnRISC

You can start programming directly on the OnRISC. The toolchain is already installed and GCC
compiler will be invoked in the same way it is done on a desktop Linux. To modify files you can
use vi or some other editor. This method is preferred, if your software has many dependencies.

6.1.2. Cross-compile your software on the PC

Debian 9 and 10 will be supplied with OMAP3 based devices. It is based on an arm-linux-gnueabihf
6.3.x (Debian 9) or arm-linux-gnueabihf 8.3.x (Debian 10) toolchains. Provided you use the same
Debian version on both your host and Baltos you can take advantage of Debian’s multiarch feature.
Below you’ll find cross-toolchain installation instructions based on your Debian version:

Debian 9 and 10 Install following packages from Debian’s own repository:
apt install binutils-arm-linux-gnueabihf g++-arm-linux-gnueabihf build-essential git

Multiarch Usage Example If your software has dependencies on other libraries provided by Debian
you can get their cross-compiled version via apt-get install package:armhf. For example to
install libsocketcan you need to invoke following command:
apt-get install libsocketcan-dev:armhf

After installation you’ll see following packages appearing in your package data base:
dpkg -l | grep libsocketcan

ii libsocketcan-dev 0.0.9+git20140207-1 armhf library to control some basic functions in SocketCAN from
userspace

ii libsocketcan2 0.0.9+git20140207-1 armhf library to control some basic functions in SocketCAN from
userspace

Following code sample uses libsocketcan to shutdown can0 interface:
include <stdio.h>
include <libsocketcan.h>

int main(int argc , char **argv)
{

printf("Hello␣world!\n");

if (can_do_stop("can0")) {
perror("Stop␣CAN␣device:␣");
return -1;

}

return 0;
}

Listing 6: Debian Multiarch Example

May 2022 OnRISC User Manual 37

6 Software Development

In order to build this program invoke:

arm-linux-gnueabihf-gcc -o test test.c -lsocketcan

Then copy resulting binary to the OnRISC device. On the device execute ldd and you’ll see linked
libraries including libsocketcan:

ldd test
libsocketcan.so.2 => /usr/lib/arm-linux-gnueabihf/libsocketcan.so.2 (0xb6f1b000)
libc.so.6 => /lib/arm-linux-gnueabihf/libc.so.6 (0xb6e2c000)
/lib/ld-linux-armhf.so.3 (0xb6f31000)

See https://wiki.debian.org/CrossToolchains for more information about multiarch support in De-
bian.

Alternatively you can use Buildroot or Yocto as your development environment.

May 2022 OnRISC User Manual 38

https://wiki.debian.org/CrossToolchains

6 Software Development

6.2. Linux Kernel

6.2.1. Getting Source Code

Baltos Kernel config, patches and Device Tree37 source files are part of Buildroot’s BSP described
in Section 9. To get the source code first build Buildroot’s default image, then you can change
kernel configuration invoking make linux-menuconfig from Buildroot’s folder.

Buildroot creates a so called FIT image (*.itb). This file combines both zImage and DTB blobs in
one file. Please refer to these slides38 and board/vscom/baltos/custom-FIT.sh for more details.
To install the kernel copy kernel-fit.itb to the FAT partition of your SD/microSD-card. See
Section 6.2.2 for kernel modules handling. You are advised to always install kernel-fit.itb
together with kernel modules from the same build to avoid versioning issues.

6.2.2. Install Kernel Modules

Compilation Outside Buildroot Linux kernel provides means to create installation package. The
most portable packaging type is a tar package. After kernel compilation invoke:

make tar-pkg

This will create linux-x.y.z.tar file in the root of your kernel tree.

Copy this package to the OnRISC device via scp and extract:

scp linux-x.y.z.tar root@192.168.254.254:/tmp

On the device perform:

tar xf /tmp/linux-x.y.z.tar -C /

You’ll now get /lib/modules/x.y.z folder created. Remove unneeded files from /boot like
System.map-x.y.z and vmlinux-x.y.z to save space.

Compilation Using Buildroot Buildroot’s baltos_defconfig automatically invokes modules.sh.
This script creates tar file and copies it to output/images/modules.tar.

6.2.3. Creating Kernel *.deb Package from Binary Files

After successfully building your kernel for example using Buildroot, create following directory
structure somewhere (/home/user/debs) on your Debian host:

mkdir -p /home/user/debs/kernel_3.18.32-2/boot
mkdir -p /home/user/debs/kernel_3.18.32-2/DEBIAN
mkdir -p /home/user/debs/kernel_3.18.32-2/lib

Copy output/images/kernel-fit.itb to /home/user/debs/kernel_3.18.32-2/boot.

Copy output/target/lib/modules to /home/user/debs/kernel_3.18.32-2/lib.

Create /home/user/debs/kernel_3.18.32-2/DEBIAN/control with following content:

37http://elinux.org/Device_Tree
38http://elinux.org/images/f/f4/Elc2013_Fernandes.pdf

May 2022 OnRISC User Manual 39

http://elinux.org/Device_Tree
http://elinux.org/images/f/f4/Elc2013_Fernandes.pdf

6 Software Development

Package : k e rne l
Vers ion : 3.18.32−2
Sec t i on : k e rne l
P r i o r i t y : op t i ona l
Arch i t e c tu re : armhf
Depends : kmod
Maintainer : Your Name <you@yoursite . com>
Desc r ip t i on : Linux Kernel

Linux Kernel with OnRISC r e l a t e d patches .

Replace Maintainer field with your name and e-mail address. As you can see Version field and
package folder are the same. The “2” the end of the version shows *.deb package version number,
i.e. kernel 3.18.32 but the second version of it (for example because of some changes in the kernel
configuration or the source code).

Now you’re ready to compile a *.deb package. Invoke:

1. cd /home/user/debs/

2. dpkg-deb --build kernel_3.18.32-2

As a result you’ll get kernel_3.18.32-2.deb file.

6.2.4. Creating a Standard Kernel *.deb Package

Starting from Debian 10, we provide the standard Kernel Debian package consisting of the following
components39:

• linux-headers-5.4.61-elbe_5.4.61-1_armhf.deb - Linux header files

• linux-image-5.4.61-elbe_5.4.61-1_armhf.deb - Linux binary image, i.e. kernel-fit.itb

• linux-libc-dev-5.4.61-elbe_5.4.61-1_armhf.deb - Linux support headers for userspace
development

• linux-5.4.61-elbe_5.4.61-1.dsc - Debian package description

• linux-5.4.61-elbe_5.4.61.orig.tar.xz - original source code

• linux-5.4.61-elbe_5.4.61-1.debian.tar.xz - custom patches and debianization files

To build your own version of this kernel (for example, with different configuration), perform the
following steps:

1. apt install quilt libelf-dev libssl-dev flex bison bc lzop u-boot-tools debhelper

2. tar xJf linux-5.4.61-elbe_5.4.61.orig.tar.xz

3. cd linux-5.4.61

4. tar xJf linux-5.4.61-elbe_5.4.61-1.debian.tar.xz

Now you have the kernel source with the debian folder. Next , we will apply the patches from
debian/patches directory:

1. export QUILT_PATCHES=debian/patches

39ftp://ftp.visionsystems.de/pub/multiio/OnRISC/Baltos/deb/buster/

May 2022 OnRISC User Manual 40

ftp://ftp.visionsystems.de/pub/multiio/OnRISC/Baltos/deb/buster/

6 Software Development

2. quilt push -a

To cross-compile the kernel and generate the packages invoke:

• DEB_BUILD_OPTIONS=nostrip dpkg-buildpackage --no-sign -a armhf

6.3. Bootloader

6.3.1. U-Boot

Baltos Baltos systems use U-Boot as a default bootloader. Buildroot BSP provides a patch40,
that adds support for Baltos devices. In order to modify U-Boot (change NAND partition table
etc.) you need to make following steps:

1. download U-Boot version, that is specified in baltos_defconfig

2. apply related patch from board/vscom/u-boot-patches/

3. add an entry to local.mk pointing to U-Boot’s folder

4. execute make in Buildroot’s folder

You’ll need following files after compilation process:

• output/images/MLO

• output/images/u-boot.img

If you’re booting from SD card, then just copy them to the first partition (FAT) or just burn
sdcard.img file directly to your SD card. In the case of NAND burn them to following partitions:

• MLO to /dev/mtdblock0

• u-boot.img to /dev/mtdblock4

6.3.2. Barebox

Baltos Buildroot BSP also provides support for barebox41 bootloader. barebox provides bash like
shell environment (hush42), SquashFS43 support as also support for TCA6416A I2C I/O expander.
To build barebox instead of U-Boot invoke:

make baltos_barebox_defconfig
make clean
make

You’ll need the following files after compilation process:

• output/images/barebox-am33xx-baltos-mlo.img - needs to be renamed to MLO when
writing to a FAT partition

• output/images/barebox-am33xx-baltos.img - needs to be renamed to barebox.bin when
writing to a FAT partition

40board/vscom/u-boot-patches/2014.07/uboot-0001-Add-support-for-Baltos-system.patch
41http://www.barebox.org/
42http://www.barebox.org/doc/latest/user/hush.html
43https://en.wikipedia.org/wiki/SquashFS

May 2022 OnRISC User Manual 41

http://www.barebox.org/
http://www.barebox.org/doc/latest/user/hush.html
https://en.wikipedia.org/wiki/SquashFS

6 Software Development

If you’re booting from SD card, then just copy them to the first partition (FAT) or just burn
sdcard.img file directly to your SD card. In the case of NAND burn them to following partitions:

• barebox-am33xx-baltos-mlo.img to /dev/mtdblock0

• barebox-am33xx-baltos.img to /dev/mtdblock4

barebox boot script44 is stored in the Buildroot BSP repository. In this file you can change boot
order or check DIP switches, I/O etc. After changing the init script you’ll need to rebuild barebox.
To do so invoke:

make barebox-rebuild

and you’ll get new output/images/barebox-am33xx-baltos.img file.

6.4. Other Programming Languages Than C/C++

You can also use other programming languages like Python, Perl etc. The system image already
provides Python and Perl. Basically you can install whatever programming language Debian itself
provides. To install for example Java invoke:

apt-get install openjdk-7-jdk

or

apt-get install openjdk-8-jdk

6.5. Recommended Books

A list of books about Linux programming/usage and related topics:

• “The Debian Administrator’s Handbook” by Raphaël Hertzog, Roland Mas (http://debian-
handbook.info/)

• “Building Embedded Linux Systems, 2nd Edition ” by Karim Yaghmour, Jon Masters, Gilad
Ben-Yossef, Philippe Gerum

• “Linux Device Drivers, Third Edition” by Jonathan Corbet, Alessandro Rubini, and Greg
Kroah-Hartman (http://lwn.net/Kernel/LDD3/)

• “C: The Complete Reference” by Herbert Schildt

• “Dive Into Python 3” (https://diveintopython3.problemsolving.io)

• “Pro Git” by Scott Chacon (http://git-scm.com/book)

44https://github.com/visionsystemsgmbh/onrisc_br_bsp/blob/master/board/vscom/baltos/barebox/env/bin/init

May 2022 OnRISC User Manual 42

http://debian-handbook.info/
http://debian-handbook.info/
http://lwn.net/Kernel/LDD3/
https://diveintopython3.problemsolving.io
http://git-scm.com/book
https://github.com/visionsystemsgmbh/onrisc_br_bsp/blob/master/board/vscom/baltos/barebox/env/bin/init

7 OnRISC Hardware API

7. OnRISC Hardware API

7.1. libonrisc

Such hardware as digital I/O, serial interfaces, USB OTG will be controlled through sysfs GPIO
entries. To simplify this task libonrisc provides a convenient access to these hardware from user
space. Following features are implemented:

• get system’s hardware info like serial number. MACs etc.

• control LEDs

• control UART’s RS232/422/485 driver

• control digital I/O

• read DIP switch

• control mPCIe slot

The library is hosted on GitHub (https://github.com/visionsystemsgmbh/libonrisc) and is included
into Debian image and is also part of other BSPs. API documentation can be found in both
README.md as also include/onrisc.h. libonrisc also provides Python bindings generated via
SWIG45.

Since Debian 9 libonrisc provides following packages:

• libonrisc1 - provides *.so files and other binaries like onrisctool etc.

• libonrisc-dev - development files, i.e. header files

• python-onrisc - Python 2.x bindings

• python3-onrisc - Python 3.x bindings

libonrisc provides a command line tool called onrisctool (see Section B). It uses most of the
API routines provided by the library and thus its source code is a good starting point to understand
API programming. In addition examples folder46 provides dedicated source code samples (both C
and Python) for different API calls.

45http://www.swig.org/
46https://github.com/visionsystemsgmbh/libonrisc/tree/master/examples

May 2022 OnRISC User Manual 43

https://github.com/visionsystemsgmbh/libonrisc
http://www.swig.org/
https://github.com/visionsystemsgmbh/libonrisc/tree/master/examples

7 OnRISC Hardware API

7.2. Digital I/O

Digital I/O is made via TCA6416A I2C I/O expander. GPIOs will be exported via sysfs. See
Kernel documentation47.

For testing purposes one can either export and manipulate I/Os via sysfs directly or use onrisctool
to control digital I/O (refer to Section B.2). For software development libonrisc provides a
convenient API (refer to Section 7.1).

7.2.1. Baltos iR 5221/3220

Baltos iR 5221/3220 provides 4 inputs (496-499) and 4 outputs (500 - 503). Inputs and outputs
have fixed direction, that cannot be changed. /sys/class/gpio will have following entries for 8
GPIOs:

gpio496 -> ../../devices/ocp.3/4802a000.i2c/i2c-1/1-0020/gpio/gpio496
gpio497 -> ../../devices/ocp.3/4802a000.i2c/i2c-1/1-0020/gpio/gpio497
gpio498 -> ../../devices/ocp.3/4802a000.i2c/i2c-1/1-0020/gpio/gpio498
gpio499 -> ../../devices/ocp.3/4802a000.i2c/i2c-1/1-0020/gpio/gpio499
gpio500 -> ../../devices/ocp.3/4802a000.i2c/i2c-1/1-0020/gpio/gpio500
gpio501 -> ../../devices/ocp.3/4802a000.i2c/i2c-1/1-0020/gpio/gpio501
gpio502 -> ../../devices/ocp.3/4802a000.i2c/i2c-1/1-0020/gpio/gpio502
gpio503 -> ../../devices/ocp.3/4802a000.i2c/i2c-1/1-0020/gpio/gpio503

7.2.2. Baltos 1080

Baltos 1080 provides 8 inputs (496-503) and 8 outputs (504-511). Inputs and outputs have fixed
direction, that cannot be changed.

47https://www.kernel.org/doc/Documentation/gpio/sysfs.txt

May 2022 OnRISC User Manual 44

https://www.kernel.org/doc/Documentation/gpio/sysfs.txt

7 OnRISC Hardware API

7.3. mPCIe On/Off Switching

In Baltos devices, the mPCIe slot can be switched on/off to enable/disable or reset the installed
mPCIe card. Switching can be made either via onrisctool or via libonrisc. For onrisctool
please refer to Section B.6. For libonrisc usage see a programming example48 on GitHub.

Please note, that cutting USB device’s power is not a standard operation, so please disable the
device and unload its driver before switching mPCIe off to avoid unexpected Linux kernel be-
haviour.

Baltos systems with U-Boot Version “U-Boot 2014.07 (May 11 2016 - 15:38:41)“ and Debian image
with Kernel 3.18.32 and newer will enable mPCIe already in the bootloader, so that depending on
modem’s firmware a modem is already available when Kernel performs USB device enumeration.
Bootloader on older systems can be easily updated using our latest Debian image:

1. boot into Debian

2. invoke update_bootloader.sh

You’ll get the following output:

Updating bootloader
Bootloader updated successfully

7.4. Serial Interfaces

Depending on the model used OnRISC devices provide serial interfaces based on different UART
types. Each UART type has it’s own handling. Below you’ll find a table describing devices and
used UARTs.

Device UART
Baltos iR 5221/3220/2110, OnRISC 113/213 16C750 (TI OMAP)
Baltos 1080, OnRISC 413/813 FT4232H (FTDI)
VS-860 FT2232D (FTDI)

Table 10: Used UARTs

7.4.1. RS422/RS485 and GND Connection

With RS422/485 serial interfaces you have to connect the logic Ground between all connected
devices. This is necessary because the specifications of RS485 require this. Unfortunately many
demonstration graphics focus on the data lines, and omit the ground line for simplicity. In order
to clarify this issue we have created a comprehensive FAQ entry49.

48https://github.com/visionsystemsgmbh/libonrisc/blob/master/examples/mpcie.c
49http://faq.visionsystems.de/index.php?action=artikel&cat=12&id=91&artlang=en

May 2022 OnRISC User Manual 45

https://github.com/visionsystemsgmbh/libonrisc/blob/master/examples/mpcie.c
http://faq.visionsystems.de/index.php?action=artikel&cat=12&id=91&artlang=en

7 OnRISC Hardware API

7.4.2. RS Mode Switching

Two methods are provided to switch between RS232/RS422/RS485 modes (termination inclusive):
via software (recommended) and via DIP-switch (DIP-switch for direct RS mode switching is
implemented only on Baltos iR 5221/3220 and VS-860). Each port has its own DIP-switch named
SW1 and SW2. Table 11 shows possible DIP-switch settings.

S1 S2 S3 S4 Mode
off off x x RS-232 Loopback Test
on off x x RS-232 MODE
on on on off RS-422 MODE
on on on on RS-422 MODE RxD +/- with 120 ohm Term
on on off off RS-485 Full Duplex Mode
on on off on RS-485 Full Duplex Mode RxD +/- with 120 ohm Term
off on off off RS-485 Half Duplex Mode without Echo
off on off on RS-485 Half Duplex Mode without Echo RxD +/- with 120 ohm Term

Table 11: Serial Modes (hardware switching for Baltos iR 5221/3220 and VS-860 only)

Software configuration can be done either via invoking onrisctool or using libonrisc routines.
Below you’ll find some onrisctool usage examples:

• onrisctool -p 1 -t rs232 (set first serial port to RS232 mode)

• onrisctool -p 2 -t rs422 (set second serial port to RS422 mode without termination)

• onrisctool -p 2 -r -t rs422 (set second serial port to RS422 mode with termination)

• onrisctool -p 1 -r -t rs485-hd (set first serial port to RS485 half-duplex mode with
termination)

For libonrisc usage see a programming examples in C50 and Python51 on GitHub.

Baltos 1080 has RS232 only fixed serial ports, so onrisctool will report error, if you try to switch
RS modes.

7.4.3. FTDI Based UARTs

FTDI based UARTs have following device naming scheme: /dev/ttyUSBx. If the system has two
UARTs, they appear in Linux as /dev/ttyUSB0 and /dev/ttyUSB1.

7.4.4. 16C750 Based UARTs

16C750 based UARTs have the following device naming scheme: /dev/ttySx. If the system has
two UARTs, they appear in Linux as /dev/ttyS1 and /dev/ttyS2. In this case the numbering
begins with ’1’ because /dev/ttyS0 is a console device. These UARTs have also special symlinks:

/dev/ttyVS0 -> ttyS1
/dev/ttyVS1 -> ttyS2

50https://github.com/visionsystemsgmbh/libonrisc/blob/master/examples/rs485.c
51https://github.com/visionsystemsgmbh/libonrisc/blob/master/examples/rs485.py

May 2022 OnRISC User Manual 46

https://github.com/visionsystemsgmbh/libonrisc/blob/master/examples/rs485.c
https://github.com/visionsystemsgmbh/libonrisc/blob/master/examples/rs485.py

7 OnRISC Hardware API

RS modes will be switched the same way as described in Section 7.4.2. Example below shows, how
to configure RS485 mode with termination from software (Please note, that you’ll need libonrisc
installed in order to compile and link this example). To build this example in Debian on OnRISC
execute following command:

gcc -o rs485 rs485.c -l onrisc

-l onrisc tells linker to link against libonrisc.

include <stdio.h>
include <stdlib.h>
include <linux/serial.h>
include <sys/types.h>
include <sys/stat.h>
include <fcntl.h>
include <string.h>
include <termios.h>
include <onrisc.h>

define TEST_BAUDRATE B9600

int main(int argc , char **argv)
{

int rc = EXIT_FAILURE;
int fd = -1, ret;
struct termios ser_termios;
onrisc_uart_mode_t mode;
char buf [32];

if (argc != 3) {
printf("Wrong␣parameter␣count.␣\nUsage :\ nrs485␣

device␣port -number\nExmaple :\ nrs485␣/dev/ttyS1␣1\
n");

goto error;
}

if (onrisc_init(NULL) == EXIT_FAILURE) {
perror("init␣libonrisc:␣");
goto error;

}

mode.rs_mode = TYPE_RS485_HD;
mode.termination = 1;

if (onrisc_set_uart_mode(atoi(argv [2]), &mode) ==
EXIT_FAILURE) {

perror("failed␣to␣set␣serial␣port␣mode:␣");
goto error;

}

/* open serial port */

May 2022 OnRISC User Manual 47

7 OnRISC Hardware API

fd = open(argv[1], O_RDWR);
if (fd < 0) {

perror("open:␣");
goto error;

}

ret = tcgetattr(fd , &ser_termios);
if (ret < 0) {

perror("Getting␣attributes");
goto error;

}
cfmakeraw (& ser_termios);

/* configure local flags */
ser_termios.c_lflag = 0;

/* configure input flags */
ser_termios.c_iflag = IGNPAR;

/* configure output flags */
ser_termios.c_oflag = 0;

/* configure control flags */
ser_termios.c_cflag = CS8 | CLOCAL | CREAD;

ser_termios.c_cc[VMIN] = 0;
ser_termios.c_cc[VTIME] = 0;

ret = cfsetispeed (& ser_termios , TEST_BAUDRATE);
ret = cfsetospeed (& ser_termios , TEST_BAUDRATE);
ret = tcsetattr(fd , TCSANOW , &ser_termios);
if (ret < 0) {

perror("Setting␣attributes");
goto error;

}

/* send test string */
sprintf(buf , "hello");
ret = write(fd , buf , strlen(buf));

rc = EXIT_SUCCESS;
error:

if (fd > 0) {
close(fd);

}

return rc;
}

Listing 7: RS485 Half-Duplex with Termination

May 2022 OnRISC User Manual 48

7 OnRISC Hardware API

7.5. CAN

SocketCAN provides access to CAN controller on all CAN capable OnRISC devices. SocketCAN52

is a set of open source CAN drivers and a networking stack contributed by Volkswagen Research
to the Linux kernel. Formerly known as Low Level CAN Framework (LLCF).

7.5.1. CAN Interface Configuration

Special script /etc/init.d/can_if53 is provided to setup can0 interface. It is preconfigured to
use can0 at 1000000b/s. These settings are stored in the CAN_IF variable:

CAN_IF="can0@1000000,200"

To start the CAN interface issue:

/etc/init.d/can_if start

to stop CAN interface issue:

/etc/init.d/can_if stop

Further information regarding programming and configuration can be found on the SocketCAN’s
project site.

7.5.2. CAN Usage Examples

To send a CAN frame execute:

cansend can0 123#1234

To receive CAN frames execute:

candump can0

7.5.3. CANopen

It is possible to use CANopen54 library from CanFestival55 or any other open source or proprietary
CANopen stack, that has SocketCAN support.

7.5.4. J1939

Since Linux kernel 5.4.x SocketCAN also supports J1939 protocol. Take a look at the related kernel
documentation56. This documentation describes motivation for this approach, API, and some usage
scenarios. This tutorial57 describes the first steps in learning the J1939 framework under Linux.
In our GitHub repository58 you can find source code samples for J1939 protocol.

52http://elinux.org/CAN_Bus
53this script is maintained in this git repository: https://github.com/linux-can/can-misc
54https://www.can-cia.org/
55https://canfestival.org/
56https://www.kernel.org/doc/html/latest/networking/j1939.html
57https://github.com/linux-can/can-utils/blob/master/can-j1939-kickstart.md
58https://github.com/visionsystemsgmbh/programming_examples/tree/master/CAN/c/socketcan

May 2022 OnRISC User Manual 49

http://elinux.org/CAN_Bus
https://github.com/linux-can/can-misc
https://www.can-cia.org/
https://canfestival.org/
https://www.kernel.org/doc/html/latest/networking/j1939.html
https://github.com/linux-can/can-utils/blob/master/can-j1939-kickstart.md
https://github.com/visionsystemsgmbh/programming_examples/tree/master/CAN/c/socketcan

7 OnRISC Hardware API

7.6. I2C

I2C59 (Inter-Integrated Circuit) is a multi-master serial computer bus. In the OnRISC integrated
I2C controller is already supported by the mainline kernel. A good starting point on how to use I2C
is Linux kernel documentation60. i2c-tools61 project provides user space utilities to work with
I2C.

To list all available I2C buses issue following command:

i2cdetect -l
i2c -1 i2c OMAP I2C adapter I2C adapter

Knowing the bus you can now search for devices connected to it. As can be seen from the output
below i2cdetect has found all devices registered in iR5221 DTS file (0x20 - TCA6416, 0x2d -
PMIC and 0x50 - EEPROM):

i2cdetect -r 1
i2cdetect: WARNING! This program can confuse your I2C bus
Continue? [y/N] y

0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: UU -- -- -- -- -- -- -- -- -- -- -- -- UU -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: UU -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

7.7. Watchdog Timer

The OnRISC provides a watchdog timer (WDT). The access to the WDT occurs via /dev/watchdog
device. After starting the WDT it should be turned off or reloaded after the critical part otherwise
the system will reboot. Table 12 shows the most important IOCTLs to control WDT.

IOCTL Description
WDIOC_SETTIMEOUT set timeout and start the timer
WDIOC_GETTIMEOUT get timeout
WDIOC_SETOPTIONS enable (WDIOS_ENABLECARD)

disable (WDIOS_DISABLECARD) the timer
WDIOC_KEEPALIVE reload the timer

Table 12: Watchdog Timer IOCTLs

The WDT driver provides a special option called "Disable watchdog shutdown on close" to prevent
stopping the timer on WDT descriptor close (see Figure 4). This is a compile-time option. It is
deactivated by default, so you have to build your own kernel if you need it.

59http://en.wikipedia.org/wiki/I2C
60https://www.kernel.org/doc/Documentation/i2c/dev-interface
61https://i2c.wiki.kernel.org/index.php/I2C_Tools

May 2022 OnRISC User Manual 50

http://en.wikipedia.org/wiki/I%C2%B2C
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://i2c.wiki.kernel.org/index.php/I2C_Tools

7 OnRISC Hardware API

Figure 4: Watchdog Timer Support

See https://www.kernel.org/doc/Documentation/watchdog/watchdog-api.txt for WDT us-
age example.

May 2022 OnRISC User Manual 51

https://www.kernel.org/doc/Documentation/watchdog/watchdog-api.txt

7 OnRISC Hardware API

7.8. Read Hardware Parameters like MAC Address, Serial Number etc.

Use onrisctool -s and you’ll get a list of all parameters stored in EEPROM. For software devel-
opment libonrisc (refer to Section 7.1) should be used to get hardware parameters.

7.9. Built-in Touchscreen Calibration (VS-860 Only)

You can choose between two calibration methods:

• tslib62 - suitable for Qt Embedded applications

• X11 evdev driver - as the name says suitable for X11

Tslib package provides ts_calibrate utility, to calibrate the touchscreen. New calibration values
will be written to /etc/pointercal. Tslib requires following environment variables to use the
touchscreen:

TSLIB_CALIBFILE=/etc/pointercal
TSLIB_CONFFILE=/etc/ts.conf
TSLIB_TSDEVICE=/dev/input/event1

Hwtest-qt utility provides special Python script (scripts/input_dev.py), that reads /proc/bus/in-
put/devices and configures TSLIB_TSDEVICE together with Qt Embedded related environment vari-
ables.

X11 evdev driver will be calibrated via xinput_calibrator (must be started from X11 session). The
calibration values will be stored in /usr/share/X11/xorg.conf.d/10-evdev.conf. Example:

Section "InputClass"
Identifier "evdev touchscreen catchall"
MatchIsTouchscreen "on"
MatchDevicePath "/dev/input/event*"
Option "Calibration" "28 999 988 41"
Driver "evdev"
EndSection

62https://github.com/kergoth/tslib

May 2022 OnRISC User Manual 52

https://github.com/kergoth/tslib

9 Buildroot

8. Debian BSPs

8.1. ELBE

E.mbedded L.inux B.uild E.nvironment (ELBE)63 is a Debian based system to generate root-
filesystems for embedded devices. It is a replacement for vsdebootstrap. As stated by the project,
it takes the following approach to fulfil its objective:

• Standard packages are not self compiled. ELBE uses the Debian distributions binary pack-
ages.

• Own applications are not cross compiled. They are built natively on the target architecture
in a chroot environment using qemu.

• The root-filesystem is a subset of the Debian system inside the chroot environment. This
implicitly ensures, that the same toolchain is used on the development machine and on the
target.

• Updating, adding or removing a package is done via Debian’s package-management (apt)
which also resolves package dependencies.

The main idea is to use the own Debian repository, where both VScom packages like kernel,
libonrisc as also customer’s own packages are hosted. This repository can be used during the
image creation as also afterwards from the device itself. Our README.md on the GitHub site64

illustrates this approach and guides you through the initial image creation process.

The whole root filesystem configuration is stored in a single XML files, that can be found under
configs folder.

8.2. vsdebootstrap

Debian provides tools to create custom root file system directly on the host. One of these tools is
debootstrap65. Our system image is created with a help of scripts wrapped around debootstrap.
You can find the scripts and corresponding documentation on our GitHub account: vsdebootstrap.
vsdebootstrap not only creates root file system with OSS packages like openvpn, ssh etc., but
also installs our packages like libonrisc and hwtest-qt. In addition it provides facilities to embed
your own packages and configuration files into resulting root file system. By default vsdebootstrap
creates an image for the current stable Debian version.

9. Buildroot

Buildroot66 is a set of Makefiles and patches that allows you to easily generate a cross-compilation
toolchain, a root filesystem and a Linux kernel image for your target. Buildroot can be used for
one, two or all of these options, independently. The benefits are:

• you don’t have to supply the toolchain it will be built automatically

63https://elbe-rfs.org
64https://github.com/visionsystemsgmbh/vscom-elbe
65https://wiki.debian.org/Debootstrap
66https://buildroot.org/

May 2022 OnRISC User Manual 53

https://github.com/visionsystemsgmbh/vscom-elbe/blob/master/README.md
https://github.com/visionsystemsgmbh/vsdebootstrap
https://elbe-rfs.org
https://github.com/visionsystemsgmbh/vscom-elbe
https://wiki.debian.org/Debootstrap
https://buildroot.org/

9 Buildroot

• you can choose between various file systems for your target image

• you can build a very small and quick booting system that suits your needs

• drivers compiled as modules will be automatically installed on your file system image

• many more

Bootlin provides very informative slides67 related to Buildroot usage. We recommend to go through
them before you begin using our BSP.

9.1. Build Host Requirements

Before building your root file system please check BR’s software requirements68. It is also recom-
mended, but not mandatory to build BR on a machine with more than 1GB RAM. You’ll also need
at least 6GB of free disk space in order to download and build needed packages.

9.2. Downloading

README.md in onrisc_br_bsp specifies a minimal required Buildroot version, so you can either
use this tag or just clone master branch as shown below. Buildroot provides BR2_EXTERNAL69

feature, that lets you keep your configuration and packages outside of Buildroot itself. To get our
BSP execute following steps:

1. git clone https://github.com/visionsystemsgmbh/onrisc_br_bsp.git

2. git clone git://git.buildroot.net/buildroot or git clone http://git.buildroot.net/git/buildroot.git
(if you’re behind a firewall)

3. cd buildroot

4. make BR2_EXTERNAL=../onrisc_br_bsp/ help

9.3. BSP Structure

• board/ - this folder provides actual BSP, i.e. kernel patches, kernel config etc.

• Config.in - Buildroot’s local package config file

• configs/ - Buildroot’s defconfigs per device like baltos_defconfig etc.

• external.mk - Buildroot’s local package config file

• local.mk70 - file needed to override package source directory

• package/ - local packages like libonrisc and packages created by customer

• README.md - BSP documentation

BSP for Baltos provides following defconfigs:

67https://bootlin.com/doc/training/buildroot/buildroot-slides.pdf
68http://nightly.buildroot.org/manual.html#requirement
69http://nightly.buildroot.org/manual.html#outside-br-custom
70http://nightly.buildroot.org/manual.html#_using_buildroot_during_development

May 2022 OnRISC User Manual 54

https://bootlin.com/doc/training/buildroot/buildroot-slides.pdf
http://nightly.buildroot.org/manual.html#requirement
http://nightly.buildroot.org/manual.html#outside-br-custom
http://nightly.buildroot.org/manual.html#_using_buildroot_during_development

9 Buildroot

• configs/baltos_defconfig - default config with U-Boot bootloader, kernel and a root file
system

• configs/baltos_barebox_defconfig - default config with barebox bootloader, kernel and
a root file system

• configs/baltos_initramfs_defconfig - default config with U-Boot bootloader, kernel and
a initramfs root file system embedded into kernel-fit.itb

• configs/baltos_experimental_defconfig - default config with barebox bootloader, recent
kernel, a root file system and patches rebased against a vanilla kernel

9.4. Building the Image

After checking out the repository you can build the default image with U-Boot bootloader by
issuing the following command:

make baltos_defconfig && make

For Barebox bootloader invoke following commands instead:

make baltos_barebox_defconfig && make

Buildroot will start to automatically download needed packages and compile them. At the end of
this procedure you’ll find built images under:

output/images

The rootfs image can now be burned on to the target media.

9.5. Copying the Created Image to the System

9.5.1. SD/microSD-card

Copy Genimage Created Image onrisc_br_bsp provides a script post-image.sh71, that creates
a ready-to-burn image for the SD/microSD-card including both FAT and ext4 partitions. After
the build process is finished you’ll find following file under output/images:

sdcard.img

This file can then be directly burned via dd or Win32 Disk Imager. See Section D.1 for further
details.

71https://github.com/visionsystemsgmbh/onrisc_br_bsp/blob/master/board/vscom/baltos/post-image.sh

May 2022 OnRISC User Manual 55

https://github.com/visionsystemsgmbh/onrisc_br_bsp/blob/master/board/vscom/baltos/post-image.sh

9 Buildroot

Copy Separate Images Manually On your SD/microSD-card you need to create two partitions
as described in Section 4.2.2. Copy following files from output/images to the FAT partition:

• MLO - SPL

• u-boot.img - U-Boot

• kernel-fit.itb - zImage + DTB as FIT binary

After this copy onrisc_br_bsp/board/vscom/baltos/uEnv.txt to the same partition.

Root file system is packaged as a tarball output/images/rootfs.tar.bz2. All you need to do is
to extract it to the second partition. Following steps will be needed on Debian/Ubuntu to burn
rootfs assuming, that SD/microSD-card is assigned to /dev/sdd:

sudo mount /dev/sdd2 /mnt
sudo rm -fr /mnt/*
sudo tar xjf output/images/rootfs.tar.bz2 -C /mnt/
sudo umount /mnt

9.5.2. NAND

Copy MLO, u-boot.img, kernel-fit.itb and rootfs.tar.bz2 to your SD/microSD-card, for ex-
ample to /root/. Boot from this SD/microSD-card and perform following commands:

1. cd /root/

2. cat MLO > /dev/mtdblock0

3. cat u-boot.img > /dev/mtdblock4

4. ubiformat -y /dev/mtd5

5. ubiattach -p /dev/mtd5

6. ubimkvol /dev/ubi0 -N kernel -s 56MiB

7. mount -t ubifs ubi0:kernel /mnt

8. cp kernel-fit.itb /mnt

9. umount /mnt

10. ubimkvol /dev/ubi0 -N rootfs -s 180MiB

11. mount -t ubifs ubi0:rootfs /mnt

12. tar xjf rootfs.tar.bz2 -C /mnt

13. umount /mnt

May 2022 OnRISC User Manual 56

9 Buildroot

The example above shows the universal method, as you can use the same rootfs.tar.bz2 to
populate to any already mounted file system. There is a faster way to write a UBIFS/SquashFS
image to a UBI partition. Instead of steps 10-13 perform following steps to write a UBIFS image:

ubiupdatevol /dev/ubi0_1 rootfs.ubifs

For SquashFS image:

ubiupdatevol /dev/ubi0_1 rootfs.squashfs

Please refer to this article72 about flashing UBIFS images for more details.

If the system doesn’t start from NAND, you can always boot from the MMC device using the
“emergency” jumper (see Section “Emergency” Jumper).

9.6. Customizing the Image

Buildroot uses Kconfig73 subsystem to manage the process of configuration just like Linux kernel
does. Following bigger parts can be configured:

• make menuconfig - configures Buildroot: toolchain, rootfs, packages

• make busybox-menuconfig - configures BusyBox74

• make linux-menuconfig - configures Kernel

First place to look for choosing new packages is BusyBox configuration. If the package is not
available there, then it can be found in Buildroot itself, if it was included into its repository.

Buildroot provides a file system overlay facility to store files that should be added to the rootfs
like configuration files (/etc/network/interfaces, etc.), SSH keys, etc. Aside from this, you can
specify your scripts that will be invoked before or after the root file system is packaged:

• BR2_ROOTFS_POST_BUILD_SCRIPT

• BR2_ROOTFS_POST_IMAGE_SCRIPT

9.7. Compiling Your Own Software

There are following ways on how to get your software to be build and installed on the system using
Buildroot:

• adding your software to the onrisc_br_bsp/package folder (recommended)

• using generated toolchain to compile your software and then manually copying it to output/target

The first way is described here Add packages and showed in the example below. The second way is
described here Using toolchain. See this article on how to override source directory Source directory
override.

You can also use Buildroot together with Eclipse to develop your application Eclipse integration.

72https://bootlin.com/blog/creating-flashing-ubi-ubifs-images/
73en.wikipedia.org/wiki/Kconfig
74www.busybox.net

May 2022 OnRISC User Manual 57

http://nightly.buildroot.org/manual.html#rootfs-custom
http://buildroot.org/downloads/manual/manual.html#adding-packages
http://buildroot.org/downloads/manual/manual.html#_using_the_generated_toolchain_outside_buildroot
https://bootlin.com/blog/buildroot-2011-11/
https://bootlin.com/blog/buildroot-2011-11/
http://buildroot.org/downloads/manual/manual.html#_integration_with_eclipse
https://bootlin.com/blog/creating-flashing-ubi-ubifs-images/
http://en.wikipedia.org/wiki/Kconfig
https://busybox.net/about.html

9 Buildroot

Example This sample project will show, how to create a CMake package with for example lib-
socketcan dependency in BR. First create sample project folder:

mkdir /home/user/myprog

Then create test.c from Listing 6 and CMakeLists.txt with following content:

p r o j e c t (myprog C)
add_executable (t e s t t e s t . c)
t a r g e t_ l i n k_ l i b r a r i e s (t e s t socketcan)
i n s t a l l (TARGETS t e s t RUNTIME DESTINATION bin)

Now you need to create package recipe in onric_br_bsp:

mkdir package/myprog
touch package/myprog/Config.in
touch package/myprog/myprog.mk

package/myprog/Config.in will have following content:

c on f i g BR2_PACKAGE_MYPROG
bool "myprog "
s e l e c t BR2_PACKAGE_LIBSOCKETCAN
help

Package example

package/myprog/myprog.mk:

###
#
myprog
#
###
MYPROG_VERSION = 1 . 0 . 0
MYPROG_SITE = g i t : // g i t . mygitsrv . com/myprog . g i t
MYPROG_DEPENDENCIES = l i b s o ck e t c an
$ (eva l $ (cmake−package))

package/myprog/Config.in must be included in central Config.in:

source "$BR2_EXTERNAL/package/ l i b o n r i s c /Conf ig . in "
source "$BR2_EXTERNAL/package/myprog/Config . in "

As MYPROG_SITE is not available and we want Buildroot to compile the working copy of myprog in
/home/user/myprog, local.mk must be edited to point to myprog’s folder:

MYPROG_OVERRIDE_SRCDIR=/home/ user /myprog

You can now select myprog via make menuconfig and entering “User-provided options”. You’ll
see myprog next to libonrisc. Select myprog and invoke make myprog-rebuild. This will rsync
/home/user/myprog into output/build/myprog-custom and build/install it. So every time you
make changes to test.c, just invoke make myprog-rebuild to rebuild it.

May 2022 OnRISC User Manual 58

9 Buildroot

9.8. Setup SSH Server

SSH server will be activated via the BR2_PACKAGE_OPENSSH variable. After copying the
new rootfs image to the media, you’ll see RSA/DSA keys will be created. By default password is
required to login via SSH. You can configure the system in the following ways:

• define root password via passwd root

• change sshd behavior to accept empty passwords (set PermitEmptyPasswords to yes in
/etc/sshd_config)

9.9. Getting Help

If you encounter any non-kernel related problems, you should get in contact with Buildroot com-
munity. As usual it is recommended to read the mailing list archives before asking questions on
the mailing list.

May 2022 OnRISC User Manual 59

https://buildroot.org/support.html
https://buildroot.org/support.html

10 Yocto

10. Yocto

The Yocto Project75 is an open source collaboration project that provides templates, tools and
methods to help you create custom Linux-based systems for embedded products regardless of the
hardware architecture. This section provides step-by-step instructions on how to add Baltos BSP
layer to your project. It is not meant as a full Yocto tutorial. You’ll find links to particular sections
of the Yocto documentation describing variables and files used in this mini tutorial.

10.1. Downloading

Layers are the main Yocto concept and consist of a set of recipes matching a common purpose. To
build an image having a kernel and libonrisc for Baltos you’ll need to add layer meta-baltos to
your bblayers.conf file. Due to libonrisc dependencies you’ll have to use Yocto 2.2 (morty) or
newer. If you build Yocto for the first time, you’ll need to perform following steps:

1. mkdir /home/user/yocto

2. cd /home/user/yocto

3. git clone -b morty git://git.yoctoproject.org/poky.git

4. cd poky

5. git clone -b morty git://git.openembedded.org/meta-openembedded

6. git clone https://github.com/visionsystemsgmbh/meta-baltos.git

7. source oe-init-build-env

10.2. Build Configuration

After these steps you’ll have a basic setup of all needed repositories and are ready to configure your
rootfs image. First of all you’ll need to add cloned layers to conf/bblayers.conf76. Open this file
and add baltos and openembedded layers so it looks like this:

LAYER_CONF_VERSION is increased each time build/conf/bblayers.conf
changes incompatibly
POKY_BBLAYERS_CONF_VERSION = "2"
BBPATH = "${TOPDIR}"
BBFILES ?= ""
BBLAYERS ?= " \
/home/user/yocto/poky/meta \
/home/user/yocto/poky/meta-poky \
/home/user/yocto/poky/meta-yocto-bsp \
/home/user/yocto/poky/meta-baltos \
/home/user/yocto/poky/meta-openembedded/meta-oe \
/home/user/yocto/poky/meta-openembedded/meta-python \
/home/user/yocto/poky/meta-openembedded/meta-networking \
"

75https://www.yoctoproject.org/
76http://www.yoctoproject.org/docs/2.1/ref-manual/ref-manual.html#structure-build-conf-bblayers.conf

May 2022 OnRISC User Manual 60

https://www.yoctoproject.org/
http://www.yoctoproject.org/docs/2.1/ref-manual/ref-manual.html#structure-build-conf-bblayers.conf

10 Yocto

BBLAYERS_NON_REMOVABLE ?= " \
/home/user/yocto/poky/meta \
/home/user/yocto/poky/meta-poky \
"

Add following lines to conf/local.conf77 to include Baltos BSP into the build process:

• MACHINE ??= "baltos"78

• IMAGE_INSTALL_append = " libonrisc"79

Invoking bitbake core-image-base would start the build process. At the end you’ll find all
needed images under tmp/deploy/images/baltos80:

• tmp/deploy/images/baltos/kernel-fit.itb - zImage + DTB as a FIT binary

• tmp/deploy/images/baltos/core-image-base-baltos.tar.bz2 - symbolic link to the rootfs

• tmp/deploy/images/baltos/MLO - symbolic link to SPL

• tmp/deploy/images/baltos/u-boot-img - symbolic link to U-Boot

Use steps from Copying the Created Image to the System in order to copy these files to your boot
medium.

10.3. Meta-baltos Structure

Baltos BSP layer provides following files/recipes:

• conf/machine/baltos.conf - initial configuration for kernel and u-boot

• recipes-bsp - recipes for libonrisc, vsopenvpnd and other packages

• recipes-kernel - kernel recipe, defconfig and patches

77http://www.yoctoproject.org/docs/2.1/ref-manual/ref-manual.html#structure-build-conf-local.conf
78http://www.yoctoproject.org/docs/2.1/ref-manual/ref-manual.html#var-MACHINE
79http://www.yoctoproject.org/docs/2.1/ref-manual/ref-manual.html#var-IMAGE_INSTALL
80http://www.yoctoproject.org/docs/2.1/ref-manual/ref-manual.html#structure-build-tmp-deploy-images

May 2022 OnRISC User Manual 61

http://www.yoctoproject.org/docs/2.1/ref-manual/ref-manual.html#structure-build-conf-local.conf
http://www.yoctoproject.org/docs/2.1/ref-manual/ref-manual.html#var-MACHINE
http://www.yoctoproject.org/docs/2.1/ref-manual/ref-manual.html#var-IMAGE_INSTALL
http://www.yoctoproject.org/docs/2.1/ref-manual/ref-manual.html#structure-build-tmp-deploy-images

11 OpenWrt

11. OpenWrt

11.1. BSP Structure

Our OpenWrt BSP is hosted on GitHub and consists of following repositories:

• openwrt-setup - main repository providing build_openwrt script, that manages the whole
build process

• onrisc-target - this repository provides kernel patches, configuration as also file system overlay
files

• vscom-packages - this is a feed repository providing libonrisc and its dependencies

11.2. Initial Setup

You’ll need to download only the first repository. Prior to doing so make sure you’ve installed all
required packages as mentioned in README.md.

Perform following actions:

1. git clone https://github.com/visionsystemsgmbh/openwrt-setup.git

2. cd openwrt-setup

3. ./build_openwrt all

The whole process can take more than one hour to finish. After this you’ll get an openwrt folder with
upstream OpenWrt and our patch applied as also an SD card image (openwrt/bin/baltos/sdcard.img).
You can change to openwrt folder and work with its native build system. For further details and
build_openwrt options refer to the above mentioned README.md file.

OpenWrt projects provides a comprehensive documentation81, that covers many topics like Open-
Wrt usage, configuration and customization.

11.3. Accessing Web Interface

OpenWrt provides DHCP server accessible via LAN port. Attaching your PC to LAN port of your
Baltos device would assign an IP address for 192.168.1.0/24 subnet. Baltos IP then is 192.168.1.1.
Enter this IP in your browser and you’ll get the initial OpenWrt login page. By default no password
is set and clicking on “Login” button is sufficient.

11.4. Installing OpenWrt to NAND

You can use previously obtained SD card image to burn OpenWrt to NAND. Access OpenWrt’s
web interface and go to “System->Backup/Flash Firmware” menu item. There you’ll find “In-
stall OpenWrt to Flash” section (see Figure 5 on page 63). Read related information concerning
configuration backup and you can proceed with installation via clicking on the “Flash” button.

81https://openwrt.org/docs/start

May 2022 OnRISC User Manual 62

https://github.com/visionsystemsgmbh/openwrt-setup
https://github.com/visionsystemsgmbh/onrisc-target
https://github.com/visionsystemsgmbh/vscom-packages
https://github.com/visionsystemsgmbh/openwrt-setup/blob/master/README.md
https://openwrt.org/docs/start

11 OpenWrt

Figure 5: OpenWrt: Install to Flash

May 2022 OnRISC User Manual 63

12 IoT

12. IoT

This Section tries to give insight into IoT universe and also to show how OnRISC can be used as
an IoT Router. For deeper understanding we recommend to look at this free eBook: A Reference
Guide To The Internet Of Things82.

IoT or the Internet of Things is a technology about connecting physical devices like sensors and
actuators to the cloud in order to analyse data collected from physical devices and control the
actuators. So the role of OnRISC will be to talk to sensors/actuators via its interfaces like CAN,
Ethernet, serial, GPIO, WLAN etc. and provide this data to a cloud service (see Figure 6 on
page 64). OnRISC device can be either a gateway between the sensors and the cloud or maintain
controlling logic.

Sensor1

Sensor2

Actuator1

Modbus

Digital Output

BACnet
IoT Cloud

MQTT

MQTT, HTTP

HTTP

SQL
Baltos

Figure 6: Baltos as IoT Router

12.1. IoT Related Protocols

There are many protocols used in IoT world: MQTT, HTTP, CoAP, AMQP etc. We will describe
only MQTT protocol as it is wide spread and it is supported by the most IoT cloud providers like
Amazon, IBM and Microsoft.

12.1.1. MQTT

As stated on the projects site83 MQTT is a machine-to-machine (M2M)/"Internet of Things" con-
nectivity protocol. It was designed as an extremely lightweight publish/subscribe messaging trans-
port. It is useful for connections with remote locations where a small code footprint is required
and/or network bandwidth is at a premium. As of version 3.1.1 MQTT became an OASIS Stan-
dard.

MQTT utilizes a “publish/subscribe” message transport model. The central part of this protocol is
a MQTT broker, that receives, manages and routes messages among its nodes. Client authentication
and authorization is also made by the MQTT broker. Table 13 on page 65 and Figure 7 on page
65 provide a MQTT example where three publishers send temperature sensor values (T1-T3) and
three subscribers receiving only relevant values.

82https://bridgera.com/ebook/
83http://mqtt.org

May 2022 OnRISC User Manual 64

https://bridgera.com/ebook/
http://mqtt.org

12 IoT

Topic Name Subscriber
T1 Sub1, Sub3
T2 Sub2
T3 Sub2, Sub3

Table 13: MQTT Scheme

MQTT
BROKER

Publisher1

Publisher2

Publisher3

Subscriber1 (Sub1)

Subscriber2 (Sub2)

Subscriber3 (Sub3)

T1

T2

T3

T1

T2, T3

T1, T3

Figure 7: MQTT Scheme

Installation Buildroot already provides both C and Python protocol implementations:

• BR2_PACKAGE_PAHO_MQTT_C

• BR2_PACKAGE_PYTHON_PAHO_MQTT

If you need OpenSSL support, it must be activated prior to MQTT building.

Debian installation requires following steps for C protocol implementation:

1. apt install libssl-dev debhelper fakeroot lsb-release

2. cd /usr/src/

3. git clone https://github.com/eclipse/paho.mqtt.c.git

4. cd paho.mqtt.c/

5. mkdir build

6. cd build

7. cmake .. -DPAHO_WITH_SSL=TRUE -DPAHO_BUILD_DEB_PACKAGE=TRUE

8. make

9. cpack

10. dpkg -i *.deb

For Python implementation:

1. apt install python-pip python3-pip

2. pip install paho-mqtt - for Python 2.x environment

3. pip3 install paho-mqtt - for Python 3.x environment

May 2022 OnRISC User Manual 65

12 IoT

Example: mqtt_gpio This program publishes Baltos digital inputs:

• onrisc/gpio/input/0

• onrisc/gpio/input/1

• onrisc/gpio/input/2

• onrisc/gpio/input/3

And subscribes to digital outputs:

• onrisc/gpio/output/0

• onrisc/gpio/output/1

• onrisc/gpio/output/2

• onrisc/gpio/output/3

If any output on the MQTT broker would change, Baltos would propagate this value to its digital
outputs. And as soon as Baltos inputs change their state, these values will be propagated to the
MQTT broker.

In order to build the C test example perform:

1. cd /usr/src/

2. git clone https://github.com/visionsystemsgmbh/programming_examples.git

3. cd programming_examples/mqtt/c/

4. mkdir build

5. cd build/

6. cmake ..

7. make

mqtt_gpio has following syntax:

mqtt_gpio IP address [port]

IP address indicates MQTT broker’s IP address and port is an optional argument specifying broker’s
TCP port (default value is 1883).

mqtt_gpio requires following setup:

1. MQTT broker (either on Baltos or on your host)

2. connect IN0 with OUT0 using a 4,7k resistor

For our example we will use Node.js based broker Mosca84 running on a desktop PC. Install Node.js
according to the project’s documentation85. After this invoke:

1. npm install mosca pino -g with super user permissions

2. mosca -v | pino

84http://www.mosca.io
85https://nodejs.org/en/download/package-manager

May 2022 OnRISC User Manual 66

http://www.mosca.io
https://nodejs.org/en/download/package-manager

12 IoT

We assume, that your host has IP address 192.168.1.170 and MQTT broker works with the standard
TCP port 1883. On Baltos invoke:

./mqtt_gpio 192.168.1.170

You’ll get following output showing that Baltos sent its initial digital input state:

Waiting for up to 10 seconds for publication of 0
on topic onrisc/gpio/input/0 for client with ClientID: Baltos
Message with token value 2 delivery confirmed
Message with delivery token 2 delivered
Waiting for up to 10 seconds for publication of 0
on topic onrisc/gpio/input/1 for client with ClientID: Baltos
Message with token value 3 delivery confirmed
Message with delivery token 3 delivered
Waiting for up to 10 seconds for publication of 0
on topic onrisc/gpio/input/2 for client with ClientID: Baltos
Message with token value 4 delivery confirmed
Message with delivery token 4 delivered
Waiting for up to 10 seconds for publication of 0
on topic onrisc/gpio/input/3 for client with ClientID: Baltos
Message with token value 5 delivery confirmed
Message with delivery token 5 delivered

Mosca’s output shows, that client with ID “Baltos” has made a connection and subscribed to the
topic "onrisc/gpio/output/#" i.e. all published outputs:
[2017 -09 -13 T15 :25:52.565Z] INFO (mosca /16765 on debian9): client connected

client: "Baltos"
[2017 -09 -13 T15 :25:52.571Z] INFO (mosca /16765 on debian9): subscribed to topic

topic: "onrisc/gpio/output /#"
qos: 1
client: "Baltos"

Let’s toggle OUT1:

onrisctool -a -0x10 -b 0x10

In reaction to this mqtt_gpio would produce following output:

Waiting for up to 10 seconds for publication of 1
on topic onrisc/gpio/input/0 for client with ClientID: Baltos
Message with token value 6 delivery confirmed
Message with delivery token 6 delivered

12.2. IoT Programming: Node-RED

Node-RED86 is a programming tool for wiring together hardware devices, APIs and online services
in new and interesting ways.

It provides a browser-based editor that makes it easy to wire together flows using the wide range
of nodes in the palette that can be deployed to its runtime in a single-click.

86https://nodered.org

May 2022 OnRISC User Manual 67

https://nodered.org

12 IoT

Installation In Buildroot you’ll have to activate Node.js package and provide a list of required
modules:

• BR2_PACKAGE_OPENSSL

• BR2_PACKAGE_NODEJS

• BR2_PACKAGE_NODEJS_MODULES_ADDITIONAL="node-red node-red-dashboard"

For Debian 9 perform following steps:
1. apt install -y apt-transport-https

2. echo “deb https://deb.nodesource.com/node_6.x stretch main” > /etc/apt/sources.list.d/nodesource.list

3. wget -qO- https://deb.nodesource.com/gpgkey/nodesource.gpg.key | apt-key add -

4. apt update

5. apt install -y nodejs

6. npm install -g node-red node-red-dashboard

Example Node-RED example connects to modbusgpio daemon (see Section 5.9) via Modbus/TCP
and hence will work only in Debian. Perform following actions:

1. cd /usr/src/

2. git clone https://github.com/visionsystemsgmbh/programming_examples.git

3. cp programming_examples/node-red/gpio.json /root/.node-red/flows_onrisc.json

4. npm install -g --unsafe-perm node-red-contrib-modbus

5. modbusgpio 502&

6. node-red

We assume that Baltos has its default IP address 192.168.254.254. As soon as you can see the
output shown below, you can point your browser to http://192.168.254.254:1880/. You’ll see the
flow chart as shown in Figure 8 on page 69. Now open a new tab in your browser and point it to
http://192.168.254.254:1880/ui/#/0 to see the dashboard as shown in Figure 9 on page 69. You
can click on the switches to change the digital output state and if you connect INs with OUTs via
4,7k resistors, you’ll see, how digital inputs get changed accordingly.
Welcome to Node -RED
===================

15 Sep 08:53:43 - [info] Node -RED version: v0 .17.5
15 Sep 08:53:43 - [info] Node.js version: v6 .11.3
15 Sep 08:53:43 - [info] Linux 3.18.32 arm LE
15 Sep 08:53:47 - [info] Loading palette nodes
15 Sep 08:54:05 - [info] Dashboard version 2.4.3 started at /ui
15 Sep 08:54:07 - [info] Settings file : /root/.node -red/settings.js
15 Sep 08:54:07 - [info] User directory : /root/.node -red
15 Sep 08:54:07 - [info] Flows file : /root/.node -red/flows_onrisc.json
15 Sep 08:54:07 - [info] Server now running at http ://127.0.0.1:1880/
15 Sep 08:54:07 - [info] Starting flows
15 Sep 08:54:08 - [info] Started flows

May 2022 OnRISC User Manual 68

12 IoT

Figure 8: Node-RED: Modbus/GPIO Example Flow Chart

Figure 9: Node-RED Modbus/GPIO Example Dashboard

May 2022 OnRISC User Manual 69

A Debian Maintenance Notes

A. Debian Maintenance Notes

A.1. Debian Package Management

Debian uses following utilities for the package management87 :

• dpkg - the main package management program.

• APT - the Advanced Package Tool. It provides the apt-get program. apt-get allows a simple
way to retrieve and install packages from multiple sources using the command line. Unlike
dpkg, apt-get does not understand .deb files, it works with the packages proper name and
can only install .deb archives from a source specified in /etc/apt/sources.list. apt-get
will call dpkg directly after downloading the .deb archives from the configured sources.

• aptitude - a package manager for Debian GNU/Linux systems that provides a frontend to the
apt package management infrastructure. aptitude is a text-based interface using the curses
library, it can be used to perform management tasks in a fast and easy way.

To find a package execute:

apt-cache search pkg name

To view info such as version, dependencies, installed size etc. execute:

apt-cache show pkg name

To install packages execute:

apt-get install pkg1 pkg2 ... (su rights needed)

To update the list of package known by your system execute:

apt-get update (su rights needed)

To upgrade all the packages on your system

apt-get upgrade (su rights needed)

To remove packages from your system execute:

apt-get remove pkg1 pkg2 ... (su rights needed)

To install a package that is not contained in the repository download the *.deb file and execute:

dpkg -i pkg file name (su rights needed)

87for detailed information visit https://wiki.debian.org/PackageManagementTools

May 2022 OnRISC User Manual 70

https://wiki.debian.org/PackageManagementTools

B onrisctool

B. onrisctool

OnRISC configuration utility provides following features to configure OMAP3 based devices:

• configure serial interfaces (RS232, RS422 etc.)

• configure digital I/O

• configure LEDs

• get EEPROM info

• set MACs from EEPROM

• enable/disable mPCIe slot

B.1. Configure Serial Interfaces

Baltos and VS-860 provide two UARTs working in RS232/RS422/RS485 modes. Invoking onrisctool
-j will show which mode each port is configured to:

onrisctool -j
Port 1: mode: rs232 termination: off source: DIP
Port 2: mode: rs232 termination: off source: DIP

As one can see both ports are configured in RS232 mode through DIP-switches. To switch the first
port into RS422 mode execute:

onrisctool -t rs422 -p 1

All possible modes are show in the Table 14. Termination can be enabled via -r parameter.

Mode Description
dip DIP-switch settings are valid
loop loopback mode
rs232 RS232
rs422 RS422

rs485-fd RS485 full duplex
rs485-hd RS485 half duplex

Table 14: Serial Modes (Software switching)

B.2. Configuring Digital I/O

Baltos iR 5221/3220 provides 4 digital inputs and 4 digital outputs, Baltos 1080 provides 8 digital
inputs and 8 digital outputs. With onrisctool you can read and modify data (see Table 15 on
page 72).

Following example for Baltos iR 5221/3220 turns pins 0 and 2 to high and clears pin 1:

onrisctool -a 0x70 -b 0x50

The same example but for Baltos 1080:

May 2022 OnRISC User Manual 71

B onrisctool

Parameter Description
-a Bit mask. Defines, what bits will be affected via the data
-b Data bits, that will affect only the bits defined by -a parameter
-g Show current state

Table 15: GPIO Parameters

onrisctool -a 0x0700 -b 0x0500

Show current state:

onrisctool -g
0x00000505

Figure 10 on page 72 shows, how mask and value are mapped to input/output connector for Baltos
iR 5221/3220. In this example IN0 is connected to OUT0 and OUT0 has high level. As one can
see 4 bytes are reserved, so that devices with more digital inputs/outputs can be supported (for
example Baltos 1080, that uses two bytes), but for Baltos iR 5221/3220 only the least significant
byte is important. Baltos 1080 uses least significant byte for inputs and the next byte for outputs.

0x00000011

7 6 5 4 3 2 1 0

OUT3 OUT2 OUT1 OUT0 IN3 IN2 IN1 IN0

0 0 0 1 0 0 0 1

Figure 10: Baltos: Digital I/O Mapping

B.3. Configuring LEDs

Baltos devices provide up to 3 user configurable LEDs. LEDs will be configured via -l parameter.
The call consists of an LED name (see Table 16 on page 72) and desired function (see Table 17 on
page 73). In the example below power LED will be turned off:

onrisctool -l pwr:0

Name Description Color
pwr power LED red
app application LED green
wln WLAN LED blue

Table 16: LED Names

May 2022 OnRISC User Manual 72

B onrisctool

Function Description
0 turn LED off
1 turn LED on
2 blink with different duty cycles for some seconds
3 get current LED state (on/off)

Table 17: LED Functions

B.4. Get EEPROM Info

onrisctool -s shows hardware related data like MACs, serial number etc. stored in EEPROM:

onrisctool -s
Hardware Parameters
===================
Model: 210
HW Revision: 1.2
Serial Number: 550100239
Production date: 20.06.2015
MAC1: 746a8f0001f5
MAC2: 746a8f0001f6
MAC3: 746a8f0001f7

B.5. Setting LAN MACs from EEPROM

You can use in EEPROM stored MACs for internal LAN interfaces:

onrisctool -m

Executing this command will set MAC1 and MAC2 to eth0 and eth1/usb0.

B.6. Controlling mPCIe Slot

The mPCIe slot in Baltos devices can be switched on and off via GPIO pin. This slot is off by
default and must be enabled on demand. To do this invoke:

onrisctool -k 1

To disable the slot invoke:

onrisctool -k 0

To check current state invoke:

onrisctool -k 3

This would output following message, if the slot is on:

mPCIe switch: on

May 2022 OnRISC User Manual 73

C hwtest-qt

C. hwtest-qt

Hwtest-qt provides various hardware tests in both console and graphical environment. To get GUI
start ghwtest-qt instead of hwtest-qt. Hwtest-qt can be run using special configuration file.

hwtest-qt -qws -c /etc/hwtest.conf

If you want to execute the tests in parallel:

hwtest-qt -qws -c /etc/hwtest.conf --parallel-exec

Please see hwtest-qt -qws --help for further options.

C.1. Controller Area Network Test

CAN test requires USB-CAN device attached to one of the USB ports88. Connect internal CAN
interface with USB-CAN via CAN cable and execute:

hwtest-qt -qws --test-can --cani=slcan0 --cano=can0

C.2. UART Test

Connect both internal serial ports via null-mode, cable and execute:

hwtest-qt -qws --test-serial --seri=/dev/ttyS1 --sero=/dev/ttyS2 --seropts=”-t rs232”

C.3. Network Test

Connect both LAN insteraces via patch cable and execute:

hwtest-qt -qws --test-network --neti=eth0 --neto=eth1

C.4. RTC Test

hwtest-qt -qws --test-rtc

C.5. WLAN Test

WLAN test scans for available WLAN hosts (iw wlan0 scan). At least one AP must be running
and antenna must be attached.

hwtest-qt -qws --test-wlan

88You’ll need a slcan tools to bring USB-CAN up. See VSCAN SocketCAN FAQ

May 2022 OnRISC User Manual 74

http://faq.visionsystems.de/index.php?action=artikel&cat=8&id=71&artlang=en

C hwtest-qt

C.6. Bluetooth Test

Bluetooth test needs an active Bluetooth device like headset, Bluetooth dongle etc. to find during
the scan.

hwtest-qt -qws --test-bt

C.7. Disk Test

Insert CFast card and execute:

hwtest-qt -qws --test-disk --drive=/dev/sda

C.8. Touch Test

If you start ghwtest-qt and you can precisely touch the buttons, then touch controller is functioning
properly. You can calibrate it by executing

ts_calibrate

C.9. Button Test

For button test the user will be prompted to press buttons on the front panel from left to right,
skipping the first button (power button).

hwtest-qt -qws --test-btn

C.10. Audio Test

Insert earphones into the left connector and execute:

hwtest-qt -qws --test-audio

You’ll hear a woman voice saying “Front left”

C.11. Modem Test

Insert a mPCIe modem and a SIM card. If you only want to test both SIM and mPCIe slots, you
don’t need an antenna. In the other case, connect an appropriate antenna to the main connector
on the mobile card.

hwtest-qt -qws -–test-modem

For the real connection test execute:

hwtest-qt -qws --test-modem --apn=internet.eplus.de --site=www.google.com

May 2022 OnRISC User Manual 75

D Managing System Images

D. Managing System Images

D.1. Flashing System Images

To copy a system image to a SD/microSD-card using your host PC just download the required
system image from our FTP server89. The image is a self-extracting 7-Zip archive that looks like
this:

20140805_debian_7_baltos.exe

In Windows, it can be extracted just with clicking on the file. In Linux you’ll first need to install
7-Zip archiver (p7zip-full package in Debian) and then invoke:

7z e 20140805_debian_7_baltos.exe

D.1.1. Windows

Win32 Disk Imager90 was developed to make/copy images from/to the flash drives connected to
a Windows host (see Figure 11). You can use Etcher91 as alternative. This application supports
Linux, Windows and Mac OS.

Figure 11: Win32 Disk Imager

89ftp://ftp.visionsystems.de/pub/multiio/OnRISC/Baltos/
90http://sourceforge.net/projects/win32diskimager/
91https://etcher.io/

May 2022 OnRISC User Manual 76

ftp://ftp.visionsystems.de/pub/multiio/OnRISC/Baltos/
http://sourceforge.net/projects/win32diskimager/
https://etcher.io/

D Managing System Images

D.1.2. Linux

From Host PC Copy already extracted *.img file (for example to /home/user/).

If USB card reader is used, the SD/microSD-card could be found under /dev/sdx devices (for
example /dev/sda, /dev/sdb etc). Please note, that the system images are complete images of a
SD/microSD-card not of the single partition and must be applied to the device like /dev/sda and
not /dev/sda1.

For the example below it will be assumed that the SD/microSD-card is assigned to /dev/sda device
and the system image is 20140805_debian_7_baltos.img:
su
dd if=/home/user/20140805_debian_7_baltos.img of=/dev/sda bs=4096

To create an image from the SD/microSD-card execute following:
dd if=/dev/sda of=/home/user/image.img

D.2. Working with Partitions

It is also possible to write/extract only one partition at file system level. The advantage: you can
write this partition even to a smaller medium. Please refer to this project FSArchiver

May 2022 OnRISC User Manual 77

http://www.fsarchiver.org/

E Frequently Asked Questions (FAQ)

E. Frequently Asked Questions (FAQ)

There is dedicated website http://faq.visionsystems.de to handle the FAQ concerning OnRISC and
other products provided by VScom. The customer question will be posted to the support team for
approval and if approved appears in the corresponding category.

May 2022 OnRISC User Manual 78

http://faq.visionsystems.de

F Licensing Information

F. Licensing Information

Following precompiled images can be obtained for Baltos systems:

• Debian

• OpenWrt

The images provide software licensed under various Open Source licenses. The main licenses in-
volved are the GNU General Public Licence version 2 (GPLv2) and the GNU Lesser General Public
Licence version 2.1 (LGPLv2.1). You’ll find the relevant text of those licenses below. In part there
are similar public licenses involved.

Sections 9, 11, 10 and 8 describe how to compile these Open Source components and create an
image from these components.

On Debian the texts of the common licenses can be found under /usr/share/common-licenses.
License information for specific packages can be found on Debian’s package data base92.

OpenWrt provides all package sources on their FTP server93. The source file archives also provide
related license information. Here is the main OpenWrt license94.

To export the source code and licenses of all used packages in Buildroot invoke make legal-info.
All required files can be found under output/legal-info.

Visit our Open Source related page95 for more information about Open Source Software used in
our products.

F.1. GNU GENERAL PUBLIC LICENSE

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share and
change free software–to make sure the software is free for all its users. This General Public License
applies to most of the Free Software Foundation’s software and to any other program whose authors
commit to using it. (Some other Free Software Foundation software is covered by the GNU Lesser
General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge

92https://www.debian.org/distrib/packages
93https://sources.openwrt.org/
94https://openwrt.org/license
95http://www.visionsystems.de/opensource

May 2022 OnRISC User Manual 79

https://www.debian.org/distrib/packages
https://sources.openwrt.org/
https://openwrt.org/license
http://www.visionsystems.de/opensource

F Licensing Information

for this service if you wish), that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs; and that you know you can do these
things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or
to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if
you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give
the recipients all the rights that you have. You must make sure that they, too, receive or can get
the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License. The
"Program", below, refers to any such program or work, and a "work based on the Program" means
either the Program or any derivative work under copyright law: that is to say, a work containing
the Program or a portion of it, either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in the term "modification".) Each
licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of
having been made by running the Program). Whether that is true depends on what the Program
does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

May 2022 OnRISC User Manual 80

F Licensing Information

a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty (or
else, saying that you provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this License. (Exception: if the Program
itself is interactive but does not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works
in themselves, then this License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not bring
the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do one
of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control compilation
and installation of the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or binary form) with the

May 2022 OnRISC User Manual 81

F Licensing Information

major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as dis-
tribution of the source code, even though third parties are not compelled to copy the source along
with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing
the Program (or any work based on the Program), you indicate your acceptance of this License to
do so, and all its terms and conditions for copying, distributing or modifying the Program or works
based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Pro-
gram subject to these terms and conditions. You may not impose any further restrictions on the
recipients’ exercise of the rights granted herein. You are not responsible for enforcing compliance
by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you may
not distribute the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly through you,
then the only way you could satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply in
other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this

May 2022 OnRISC User Manual 82

F Licensing Information

License may add an explicit geographical distribution limitation excluding those countries, so that
distribution is permitted only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number
of this License which applies to it and "any later version", you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose any
version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EX-
CEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PRO-
GRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INAC-
CURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and change
under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have at
least the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and an idea of what it does.>

May 2022 OnRISC User Manual 83

F Licensing Information

Copyright (C) < yyyy> <name of author>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive
mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSO-
LUTELY NO WARRANTY; for details type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than ‘show w’
and ‘show c’; they could even be mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
"copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which makes
passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Lesser General Public
License instead of this License.

F.2. GNU LESSER GENERAL PUBLIC LICENSE

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the successor of the GNU
Library Public License, version 2, hence the version number 2.1.]

Preamble

May 2022 OnRISC User Manual 84

F Licensing Information

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and
change free software–to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software
packages–typically libraries–of the Free Software Foundation and other authors who decide to use
it. You can use it too, but we suggest you first think carefully about whether this license or the
ordinary General Public License is the better strategy to use in any particular case, based on the
explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish); that you receive source code or can get it if you want
it; that you can change the software and use pieces of it in new free programs; and that you are
informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these
rights or to ask you to surrender these rights. These restrictions translate to certain responsibilities
for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the
recipients all the rights that we gave you. You must make sure that they, too, receive or can get
the source code. If you link other code with the library, you must provide complete object files to
the recipients, so that they can relink them with the library after making changes to the library
and recompiling it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you
this license, which gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the free
library. Also, if the library is modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original author’s reputation will not be
affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to
make sure that a company cannot effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a
version of the library must be consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public Li-
cense. This license, the GNU Lesser General Public License, applies to certain designated libraries,
and is quite different from the ordinary General Public License. We use this license for certain
libraries in order to permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library, the com-
bination of the two is legally speaking a combined work, a derivative of the original library. The
ordinary General Public License therefore permits such linking only if the entire combination fits
its criteria of freedom. The Lesser General Public License permits more lax criteria for linking
other code with the library.

We call this license the "Lesser" General Public License because it does Less to protect the user’s
freedom than the ordinary General Public License. It also provides other free software developers
Less of an advantage over competing non-free programs. These disadvantages are the reason we

May 2022 OnRISC User Manual 85

F Licensing Information

use the ordinary General Public License for many libraries. However, the Lesser license provides
advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use
of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs
must be allowed to use the library. A more frequent case is that a free library does the same job
as widely used non-free libraries. In this case, there is little to gain by limiting the free library to
free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater number
of people to use a large body of free software. For example, permission to use the GNU C Library
in non-free programs enables many more people to use the whole GNU operating system, as well
as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does ensure
that the user of a program that is linked with the Library has the freedom and the wherewithal to
run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close
attention to the difference between a "work based on the library" and a "work that uses the library".
The former contains code derived from the library, whereas the latter must be combined with the
library in order to run.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains a notice
placed by the copyright holder or other authorized party saying it may be distributed under the
terms of this Lesser General Public License (also called "this License"). Each licensee is addressed
as "you".

A "library" means a collection of software functions and/or data prepared so as to be conveniently
linked with application programs (which use some of those functions and data) to form executa-
bles.

The "Library", below, refers to any such software library or work which has been distributed under
these terms. A "work based on the Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a portion of it, either verbatim
or with modifications and/or translated straightforwardly into another language. (Hereinafter,
translation is included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for making modifications to it. For
a library, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of
the library.

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running a program using the Library is not restricted, and
output from such a program is covered only if its contents constitute a work based on the Library
(independent of the use of the Library in a tool for writing it). Whether that is true depends on
what the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to

May 2022 OnRISC User Manual 86

F Licensing Information

this License and to the absence of any warranty; and distribute a copy of this License along with
the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work
based on the Library, and copy and distribute such modifications or work under the terms of Section
1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed the files
and the date of any change.

c) You must cause the whole of the work to be licensed at no charge to all third parties under the
terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be supplied by an
application program that uses the facility, other than as an argument passed when the facility is
invoked, then you must make a good faith effort to ensure that, in the event an application does not
supply such function or table, the facility still operates, and performs whatever part of its purpose
remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely well-
defined independent of the application. Therefore, Subsection 2d requires that any application-
supplied function or table used by this function must be optional: if the application does not
supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Library, and can be reasonably considered independent and separate works
in themselves, then this License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of a whole which is
a work based on the Library, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with
a work based on the Library) on a volume of a storage or distribution medium does not bring the
other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this
License to a given copy of the Library. To do this, you must alter all the notices that refer to this
License, so that they refer to the ordinary GNU General Public License, version 2, instead of to
this License. (If a newer version than version 2 of the ordinary GNU General Public License has
appeared, then you can specify that version instead if you wish.) Do not make any other change
in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU
General Public License applies to all subsequent copies and derivative works made from that copy.

May 2022 OnRISC User Manual 87

F Licensing Information

This option is useful when you wish to copy part of the code of the Library into a program that is
not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided that you
accompany it with the complete corresponding machine-readable source code, which must be dis-
tributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange.

If distribution of object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not compelled to copy the source along
with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work
with the Library by being compiled or linked with it, is called a "work that uses the Library". Such
a work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of
this License.

However, linking a "work that uses the Library" with the Library creates an executable that is a
derivative of the Library (because it contains portions of the Library), rather than a "work that
uses the library". The executable is therefore covered by this License. Section 6 states terms for
distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the Library,
the object code for the work may be a derivative work of the Library even though the source code
is not. Whether this is true is especially significant if the work can be linked without the Library,
or if the work is itself a library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and
small macros and small inline functions (ten lines or less in length), then the use of the object file
is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this
object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the
work under the terms of Section 6. Any executables containing that work also fall under Section
6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a "work that uses the
Library" with the Library to produce a work containing portions of the Library, and distribute that
work under terms of your choice, provided that the terms permit modification of the work for the
customer’s own use and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that
the Library and its use are covered by this License. You must supply a copy of this License. If
the work during execution displays copyright notices, you must include the copyright notice for the
Library among them, as well as a reference directing the user to the copy of this License. Also, you
must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code for the
Library including whatever changes were used in the work (which must be distributed under Sec-
tions 1 and 2 above); and, if the work is an executable linked with the Library, with the complete
machine-readable "work that uses the Library", as object code and/or source code, so that the user
can modify the Library and then relink to produce a modified executable containing the modified

May 2022 OnRISC User Manual 88

F Licensing Information

Library. (It is understood that the user who changes the contents of definitions files in the Library
will not necessarily be able to recompile the application to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism
is one that (1) uses at run time a copy of the library already present on the user’s computer
system, rather than copying library functions into the executable, and (2) will operate properly
with a modified version of the library, if the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at least three years, to give the same user
the materials specified in Subsection 6a, above, for a charge no more than the cost of performing
this distribution.

d) If distribution of the work is made by offering access to copy from a designated place, offer
equivalent access to copy the above specified materials from the same place.

e) Verify that the user has already received a copy of these materials or that you have already sent
this user a copy.

For an executable, the required form of the "work that uses the Library" must include any data and
utility programs needed for reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the operating
system on which the executable runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries
that do not normally accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single
library together with other library facilities not covered by this License, and distribute such a
combined library, provided that the separate distribution of the work based on the Library and of
the other library facilities is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined
with any other library facilities. This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based on
the Library, and explaining where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Library or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing
the Library (or any work based on the Library), you indicate your acceptance of this License to
do so, and all its terms and conditions for copying, distributing or modifying the Library or works
based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with or modify

May 2022 OnRISC User Manual 89

F Licensing Information

the Library subject to these terms and conditions. You may not impose any further restrictions on
the recipients’ exercise of the rights granted herein. You are not responsible for enforcing compliance
by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you may
not distribute the Library at all. For example, if a patent license would not permit royalty-free
redistribution of the Library by all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to refrain entirely from distribution
of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply, and the section as a whole is intended to apply in
other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is implemented by public license practices.
Many people have made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Library under this Li-
cense may add an explicit geographical distribution limitation excluding those countries, so that
distribution is permitted only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser General
Public License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number
of this License which applies to it and "any later version", you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Library does not specify a license version number, you may choose any version
ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution
conditions are incompatible with these, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the
free status of all derivatives of our free software and of promoting the sharing and reuse of software
generally.

NO WARRANTY

May 2022 OnRISC User Manual 90

F Licensing Information

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EX-
CEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUTWARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS
WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (IN-
CLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INAC-
CURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public,
we recommend making it free software that everyone can redistribute and change. You can do so
by permitting redistribution under these terms (or, alternatively, under the terms of the ordinary
General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file should
have at least the "copyright" line and a pointer to where the full notice is found.

<one line to give the library’s name and an idea of what it does.>

Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
"copyright disclaimer" for the library, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in

the library ‘Frob’ (a library for tweaking knobs) written

May 2022 OnRISC User Manual 91

F Licensing Information

by James Random Hacker.

<signature of Ty Coon>, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

May 2022 OnRISC User Manual 92

Index
APN, 27
apt, 70

Barebox, 41, 55
Buildroot, 16

CAN, 49
can0, 49
CANopen, 49

Debian, 16
debootstrap, 53
DNS, 14

FIT, 39

gateway, 14
GPS, 31
GSM, 27

hwtest-qt, 74

I2C, 50
initramfs, 55
IoT, 64
iw, 24

J1939, 49

Logging, 20
LTE, 27

MBIM, 28
MLO, 18
Modbus, 34, 68
MQTT, 64

NAND, 19, 56

onrisctool, 71
OpenWrt, 9, 17, 62

QMI, 28

resolv.conf, 14
RFC2217, 33

ser2net, 33
services, 20
SocketCAN, 49
SPL, 18, 56

SquashFS, 41
SSH, 33
swap, 20
systemd, 15

TERM, 13

U-Boot, 41, 55
UBI, 19
ubiattach, 56
ubiformat, 56
ubimkvol, 56
ubiupdatevol, 57

viaVPN, 31
vt100, 13

Watchdog Timer (WDT), 50
WEP, 24
WLAN, 22
WPA, 24
WPA2, 24
wpa_supplicant, 24

Yocto, 9, 16, 38, 60

	1 Introduction
	1.1 OnRISC Family
	1.2 How to Read the Manual?

	2 Getting Started
	2.1 Connect to OnRISC via Serial Link
	2.2 Terminal Type
	2.3 Configure Network
	2.3.1 Legacy Configuration
	2.3.2 Configuration via systemd-networkd

	3 Supported Linux Distributions
	3.1 Debian
	3.2 Buildroot
	3.3 Yocto
	3.4 OpenWrt
	3.5 Distribution Choice

	4 Software Configuration
	4.1 Init System
	4.2 Boot Device Sequence
	4.2.1 ``Emergency'' Jumper
	4.2.2 Booting from SD/microSD-card
	4.2.3 Booting from NAND
	4.2.4 Booting from USB

	4.3 Swapping and Logging
	4.4 Activating and Deactivating Services
	4.5 System Image
	4.5.1 Program Overview

	5 Network Services and Tools Provided by OnRISC
	5.1 LAN Configuration
	5.1.1 Baltos

	5.2 WLAN Configuration
	5.2.1 Regulatory Domains
	5.2.2 Managed Wireless Network (Wpa_supplicant)
	5.2.3 Ad-hoc Wireless Network
	5.2.4 Supported WLAN Hardware

	5.3 GSM Support
	5.3.1 PPP
	5.3.2 ModemManager
	5.3.3 Disabling PIN Request
	5.3.4 Connect Modem On Startup
	5.3.5 Controlling a Modem with Python

	5.4 Remote VPN Access with viaVPN
	5.5 GPS
	5.5.1 GPS Device Setup
	5.5.2 Reading Raw GPS Data
	5.5.3 gpsd

	5.6 SSH
	5.7 RFC2217
	5.8 Socketcand
	5.9 GPIO over Modbus/TCP

	6 Software Development
	6.1 Environment
	6.1.1 Compile your software directly on the OnRISC
	6.1.2 Cross-compile your software on the PC

	6.2 Linux Kernel
	6.2.1 Getting Source Code
	6.2.2 Install Kernel Modules
	6.2.3 Creating Kernel *.deb Package from Binary Files
	6.2.4 Creating a Standard Kernel *.deb Package

	6.3 Bootloader
	6.3.1 U-Boot
	6.3.2 Barebox

	6.4 Other Programming Languages Than C/C++
	6.5 Recommended Books

	7 OnRISC Hardware API
	7.1 libonrisc
	7.2 Digital I/O
	7.2.1 Baltos iR 5221/3220
	7.2.2 Baltos 1080

	7.3 mPCIe On/Off Switching
	7.4 Serial Interfaces
	7.4.1 RS422/RS485 and GND Connection
	7.4.2 RS Mode Switching
	7.4.3 FTDI Based UARTs
	7.4.4 16C750 Based UARTs

	7.5 CAN
	7.5.1 CAN Interface Configuration
	7.5.2 CAN Usage Examples
	7.5.3 CANopen
	7.5.4 J1939

	7.6 I²C
	7.7 Watchdog Timer
	7.8 Read Hardware Parameters like MAC Address, Serial Number etc.
	7.9 Built-in Touchscreen Calibration (VS-860 Only)

	8 Debian BSPs
	8.1 ELBE
	8.2 vsdebootstrap

	9 Buildroot
	9.1 Build Host Requirements
	9.2 Downloading
	9.3 BSP Structure
	9.4 Building the Image
	9.5 Copying the Created Image to the System
	9.5.1 SD/microSD-card
	9.5.2 NAND

	9.6 Customizing the Image
	9.7 Compiling Your Own Software
	9.8 Setup SSH Server
	9.9 Getting Help

	10 Yocto
	10.1 Downloading
	10.2 Build Configuration
	10.3 Meta-baltos Structure

	11 OpenWrt
	11.1 BSP Structure
	11.2 Initial Setup
	11.3 Accessing Web Interface
	11.4 Installing OpenWrt to NAND

	12 IoT
	12.1 IoT Related Protocols
	12.1.1 MQTT

	12.2 IoT Programming: Node-RED

	A Debian Maintenance Notes
	A.1 Debian Package Management

	B onrisctool
	B.1 Configure Serial Interfaces
	B.2 Configuring Digital I/O
	B.3 Configuring LEDs
	B.4 Get EEPROM Info
	B.5 Setting LAN MACs from EEPROM
	B.6 Controlling mPCIe Slot

	C hwtest-qt
	C.1 Controller Area Network Test
	C.2 UART Test
	C.3 Network Test
	C.4 RTC Test
	C.5 WLAN Test
	C.6 Bluetooth Test
	C.7 Disk Test
	C.8 Touch Test
	C.9 Button Test
	C.10 Audio Test
	C.11 Modem Test

	D Managing System Images
	D.1 Flashing System Images
	D.1.1 Windows
	D.1.2 Linux

	D.2 Working with Partitions

	E Frequently Asked Questions (FAQ)
	F Licensing Information
	F.1 GNU GENERAL PUBLIC LICENSE
	F.2 GNU LESSER GENERAL PUBLIC LICENSE

	Index

