
OpenNetCom Documentation 1.0

Vision Systems GmbH

November 16, 2006

1

Contents

1 Hardware 3
1.1 Components . 3
1.2 Startup . 3
1.3 RS-driver . 4
1.4 Service-Board-Connector . 4

2 Software 5
2.1 Bootloader . 5
2.2 Linux . 6
2.3 Development . 6

2.3.1 Cross-Compiler . 6
2.3.2 uClinux Compilation . 6
2.3.3 User-Application . 7
2.3.4 Debugging . 8
2.3.5 Kernel-Debugging . 8
2.3.6 Examples . 8

2.4 Miscellaneous Applications . 8
2.4.1 Proc-Filesystem . 8
2.4.2 Daemons (Telnet, Ftp) . 9
2.4.3 rbcfg . 9
2.4.4 socat . 9
2.4.5 setserial and stty . 10
2.4.6 iwconfig, iwpriv and iwlist . 10

3 General Information 11
3.1 System . 11
3.2 LAN . 11
3.3 WLAN . 11

2

1 Hardware

1.1 Components

The OpenNetCom consists of the following hardware:

• CPU: Micrel KS8695P ARM9/166MHz

• SDRAM: 16MB

• Flash: 2MB

• LAN: one 100MBit LAN port

• Wireless: 802.11b/g RaLink card (RT2560)

• Serial: from one up to sixteen ports (16C950 with rs232/rs422/rs485)

• Optional: Service-Board with a console port, diagnostic leds and a 20pin JTAG connector

1.2 Startup

You can configure the startup modes of the OpenNetCom with the switches on the back of the
device. Therefor you’ve the following choices:

1: kernel messages and the console on the internal port (Service-Board)

2: kernel messages and the console on the first serial port

3: KGDB on the internal port and the console on the first serial port

It’s possible to use the switches for your own tasks. Therefor you can switch off their usage
in RedBoot when you insert „noswitch“ into the kernel command line. Then you’ve the option
to control the behaviour of the switches over kernel parameters:

1: console=ttyKS0 (default)
2: console=ttyS0
3: console=ttyKGDB kgdb

3

1.3 RS-driver

The serial drivers will be configured into rs232 mode at startup of the system. If you don’t want
this for any reason, you can switch the RS-drivers off with the kernel parameter „rsoff“. This
could be useful if you’ve a rs485 device at a serial port and it would not be a good idea to put
rs232 voltage levels on the lines.

Than you can configure the operation mode of the drivers over linux with ioctls or over the
proc-filesystem. Take a look at the software linux section.

1.4 Service-Board-Connector

P0, P1, P2 are the status leds on the Service-Board. VDD is supplied with 5 Volt and the RxD,
TxD, RTS and CTS belong to the internal console port (TTL level). The other lines are for the
original JTAG interface.

4

2 Software

2.1 Bootloader

RedBoot1 is used as the main bootloader for the system. If you wanna work directly with
RedBoot, you’ll need the Service-Board. Then it’s possible to get connected over a terminal
program2 with the following serial parameters: 115200,8,n,1. Therefor you must restart the
system and press „Control-C“ to get into RedBoot’s console.

Now you should see someting like this:

FLASH 1 SST39VF1601 device found, AMD command set

RedBoot(tm) bootstrap and debug environment [REDBOOT]
Non-certified release, version UNKNOWN - built 10:13:57, Jul 6 2006

Platform: Kendin/Micrel KS8695 system (ARM9)
Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

RAM: 0x00000000-0x01000000, [0x00008000-0x00fdc000] available
FLASH: 0x02800000 - 0x02a00000, 512 blocks of 0x00001000 bytes each.
== Executing boot script in 0.100 seconds - enter ^C to abort
^C
RedBoot> fis list
Name FLASH addr Mem addr Length Entry point
RedBoot 0x02800000 0x02800000 0x00010000 0x00000000
File System 0x02810000 0x00400000 0x000E1000 0xFFFFFFFF
Kernel 0x028F1000 0x00400000 0x000C8000 0x00008000
Data 0x029B9000 0x029B9000 0x00045000 0xFFFFFFFF
RedBoot config 0x029FE000 0x029FE000 0x00001000 0x00000000
FIS directory 0x029FF000 0x029FF000 0x00001000 0x00000000
RedBoot>

When you type the command „fis list“, you’ll see the partition listing of the flash. In the first
partition resides RedBoot. This partition is write-protected!

The partition „File System“ contains the CramFs (Compressed ROM File System). The
CramFs is a very good compressed file system, in which the main applications and libraries
reside (e.g. busybox, libc, . . .). When you call an application like „socat“, then it would be
decompressed into ram and gets called. The CramFs itself is read-only.

The next partition includes the linux kernel. It is also compressed and loaded from RedBoot
into RAM at boot time.

The „Data“ partition is the place for the JFFS2 (Journalling Flash File System Ver2). It is
a log-structured file system designed for use on flash devices in embedded systems. It is also
writeable, so the configuration and your own files will reside there. JFFS2 is a compressed file
system but not as good as the CramFs.

The next two partitions include the RedBoot configuration and the partition table.

There are many commands available in RedBoot. Some of the important once are: help,
fconfig, fis and load.

If you wanna flash a partition with RedBoot, e.g. you’ve damaged the kernel partition, you
could do this over the console port. Therefor you must load the data with „load -r -m xmodem
-b 0x400000“ and write it to the destination partition with „fis create -b 0x400000 -l 0xC8000
-e 0x8000 Kernel“.

1http://sourceware.org/redboot
2ZOC / Hyperterminal

5

http://sourceware.org/redboot
http://www.emtec.com/zoc/index.html

You’ve also the choice to program a complete flash image. Therefor load the image with
„load -r -m xmodem -b 0x400000“ and write it back with „fis write -f 0x2800000 -b 0x400000
-l 0x200000“. You’ll find such an image for your OpenNetCom on the CD.

If you’re interested in changing some kernel parameters, you can do this over the command
„fconfig“. When you come to the line „alias/linux_exec: exec -c "root=/dev/mtdblock2"“, you
could enter your additional stuff there. It is also possible to change RedBoot’s configuration
under linux with the command „rbcfg“.

2.2 Linux

The operating system of the OpenNetCom is uClinux3. It consists of a kernel which is adapted
to support many embedded architectures - also some without a MMU (Memory Management
Unit). And it includes many applications which are very small and will satisfy most of the tasks
a user could do. You find the uClinux distribution on the the CD and you’ve also the possibility to
checkout or update the sources with subversion4 from svn.vscom.de. For example: „svn check-
out svn://svn.vscom.de/ OpenNetCom/trunk OpenNetCom/trunk“. For more information
take a look at http://svn.vscom.de.

The main configuration files of the OpenNetCom reside in „/etc“ on the data partition. So if
you wanna configure another ip-address at bootup, you can do this in the file „/etc/rc“ - there
you can start also the dhcp client daemon or do other initializing things.

2.3 Development

2.3.1 Cross-Compiler

For the compilation of uClinux or your own applications, you’ll need a cross-compiler for the
ARM platform. You find one on the CD in the archive „toolchain_arm.tar.bz2“. Please decom-
press this archive into your directory „/opt“. For example: „root@development:/opt> tar -xjf
/cdrom/development/toolchain_arm.tar.bz2“.

Additionaly, put the directory of the cross-compiler tools in your path environment variable
(e.g. „export PATH=/opt/uClinux/bin:$PATH“).

2.3.2 uClinux Compilation

First of all please ensure, that you’ve also installed the needed packages for your development
system - like:

• compiler tools (gcc, make)

• ncurses development

• zlib development

3http://www.uClinux.org
4 http://subversion.tigris.org

6

http://svn.vscom.de
http://www.uClinux.org
http://subversion.tigris.org

If you wanna compile the kernel and user tools for your own, you must decompress the sources
from the CD into a directory of your choice. For example: „tar -xjf /cdrom/development/OpenNetCom
_Sources_1_0.tar.bz2“. (The decompressed sources occupy more than one gigabyte on your
harddisk; the main reason is, that subversion holds a copy of the origin version of each file.)

Then you can switch into the „uClinux-dist“ directory and call „make menuconfig“. Now go
to the vendor and product selection dialog and select the vendor „VisionSystems“ and the product
„OpenNetCom“. Then you can leave the menu and run „make dep“. After that you can start the
main compilation by calling „make“. When everything is finished, you’ll find the images in the
folder „images“. zImage is the compressed kernel, cramdisk the CramFs and jffs2 includes the
data partition filesystem.

If you wanna flash one of these images to your device, you can do this with the following
commands:

NetCom nc -l -p 2400 > /var/image.bin
PC netcat 192.168.254.254 2400 < images/zImage

NetCom cat /var/image.bin > /dev/mtdblock3

Take a look at „/proc/mtd“, if you like to know where the several images reside (e.g. „cat
/proc/mtd“).

2.3.3 User-Application

When you’re programming your own applications it’s the same thing as under your normal linux
PC - except that you must use a cross-compiler. If you wanna program a hello world example,
you must create the source and compile it with the arm-linux-gcc, like this:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

printf("Hello World\n");
return 0;

}

and than do the compilation with „arm-linux-gcc -O0 -g3 -o hello hello.c“. To reduce the size
for the target system, you can call strip which will exclude all stuff that is not needed for the final
binary (debugging information, strings, . . .). Do it with „arm-linux-strip -o hello.strip hello“.

For uploading your own applications to the OpenNetCom, you can use a ftp client of your
choice. Use the Internet Explorer or Konqueror for example. Therefor you type in the ip address
of your OpenNetCom in the address field like „ftp://root@192.168.254.254“. The
standard password for the system is „linux“.

7

ftp://root@192.168.254.254

2.3.4 Debugging

You have the possibility to debug your own applications with the gdbserver on the target.
To debug your application start the server with the following command: „gdbserver :9000
/data/hello“. Make a connection to the server with the insight debugger: „arm-linux-insight
hello“. Go to the menu „Target Settings“ and enter your destination data. Than you can get
connected to the target with „Run Connect to target“. The rest of the debugging is up to you.

2.3.5 Kernel-Debugging

You must start the system with the switch configuration number three. After that, the KGDB
will listen on the serial console port (Service-Board). Then you can get connected to the kernel
with „arm-linux-insight linux-2.4.x\vmlinux“. There you must configure the connection type
remote serial in the target selection dialog. The baudrate is „115200“ for the system.

The console will be on the first serial port. And in the kernel debugging mode, you’ve also
the possibility to use the SysRq features. Therefor you must send a serial break and the special
SysRq key - for example: „h = help“, „d = break into the kernel“. Please note: to send a serial
break, the terminal program ZOC should be the first choice.

2.3.6 Examples

There are example programs on the CD from which you can learn how to use ioctls for the leds,
switches, network and serial ports. The programs are preinstalled in the „/data“ directory on the
OpenNetCom.

2.4 Miscellaneous Applications

2.4.1 Proc-Filesystem

You can configure many OpenNetCom specific things over the proc-filesystem - like:

8

/proc/netcom/epld_ttySx read and write the rs-modes from/to the EPLD of the OpenNetCom
/proc/netcom/leds switch the leds or read the actual status of them
/proc/netcom/switch read the switch positions
/proc/netcom/tstjmp read the status of the test jumper
/proc/gpio read and write from/to the gpio
/proc/gpio_ctrl read and write from/to the gpio control register

While reading most of the values, you’ll get some help. Here are examples:

cat /proc/netcom/epld_ttyS2 retrieve the status of the mode for the second serial port
echo rs422 > /proc/netcom/epld_ttyS2 sets the mode of the second port to rs422
echo GREEN red > /proc/netcom/leds switch the green led on and the the red one off
echo 0x03 0x01 > /proc/gpio switch the first gpio bit on and the second off

When you’re interested in the direct use of the gpio data and control register, take a look at the
KS8695 datasheet on the CD.

2.4.2 Daemons (Telnet, Ftp)

There are several daemons running on the OpenNetCom. The telnet daemon gives you the
possibility for user logins from a remote workstation. The ftp daemon is used for the file transfer
to and from the OpenNetCom. The upload functionality (writing to the device), is only supported
for the data partition (mounted on „/data“) or the self growing ramfs (mounted on „/var“).
(Note: The default username for the system is root and the password linux)

2.4.3 rbcfg

rbcfg gives you the chance to manipulate the data of Redboot’s configuration, which is stored in
the „RedBoot config“ partition from linux.

2.4.4 socat

Socat is a specialized version of netcat - for advanced users ;-). A snippet from the readme:

socat can be used, e.g., as TCP port forwarder (one-shot or daemon), as an
external socksifier, for attacking weak firewalls, as a shell interface to UNIX
sockets, IP6 relay, for redirecting TCP oriented programs to a serial line, to
logically connect serial lines on different computers.

The most interesting thing would be to emulate the raw server functionality, that is also imple-
mented as an example application. To do this, you must only call: „socat TCP4-LISTEN:3000
,fork,reuseaddr /dev/ttyS1,raw,echo=0“ - than you have a transparent raw tunnel between
the tcp connection on port 3000 and the first serial port. Another example is the commu-
nication between the stdin from your console and the first serial port: „socat -,raw,echo=0
/dev/ttyS1,raw,echo=0“.

9

2.4.5 setserial and stty

With setserial you can get and set many serial port informations. These informations include
things like the I/O port, IRQ, baud base and some more. For example call „setserial -a /dev/ttyS1“
to get the information of the first serial port. You will see a output like this:

/dev/ttyS1, Line 0, UART: 16950/954, Port: 0x0000, IRQ: 4
Baud_base: 921600, close_delay: 50, divisor: 0
closing_wait: 3000
Flags: spd_normal

To get some help which parameters you can set and how to do this, call „setserial –help“.
With stty you can change and print terminal line settings. This is usefull, if you wanna see the

actual baudrate or set it to a different value. To see all the informations of the first serial port,
call „stty -a < /dev/ttyS1“. Setting the baudrate to another value will be optained with „stty
115200 < /dev/ttyS1“.

2.4.6 iwconfig, iwpriv and iwlist

You can view and change the wireless configuration with these programs. Calling „iwconfig
ra0“, you’ll get all the wireless information for the WLAN-card in the OpenNetCom. Here are
some examples for the configuration of the wireless settings:

Example I: Config STA to link with AP which is OPEN/NONE(Authentication/Encryption)
1. iwconfig ra0 mode managed
2. iwconfig ra0 key open
3. iwconfig ra0 key off
4. iwconfig ra0 essid "AP’s SSID"

Example II: Config STA to link with AP which is SHARED/WEP(Authentication/Encryption)
1. iwconfig ra0 mode managed
2. iwconfig ra0 key restricted
3. iwconfig ra0 Key [1] "s:AP’s wep key"
4. iwconfig ra0 key [1]
5. iwconfig ra0 essid "AP’s SSID"

Example III: Config STA to create/link as adhoc mode
1. iwconfig ra0 mode ad-hoc
2. iwconfig ra0 key off
3. iwconfig ra0 essid "AP’s SSID"

Example IV: Config STA to link with AP which is WPAPSK/TKIP(Authentication/Encryption)
1. iwconfig ra0 mode managed
2. iwconfig ra0 essid "AP’s SSID"
3. iwpriv ra0 set AuthMode=WPAPSK
4. iwpriv ra0 set EncrypType=TKIP
5. iwpriv ra0 set WPAPSK="AP’s wpa-preshared key"

Example V: Config STA to link with AP which is WPAPSK/AES(Authentication/Encryption)
1. iwconfig ra0 mode managed
2. iwconfig ra0 essid "AP’s SSID"
3. iwpriv ra0 set AuthMode=WPAPSK
4. iwpriv ra0 set EncrypType=AES
5. iwpriv ra0 set WPAPSK="AP’s wpa-preshared key"

Please note, that you must configure the right country region if you wanna configure some chan-
nel numbers. Take also a look at the „iwpriv_usage.txt“ file in the documentation directory on

10

the CD and also at the example configuration in „/etc/rc“.

If you want to find wireless networks in your range, you can do this with „iwlist ra0 scan-
ning“.

3 General Information

3.1 System

• Username: root

• Password: linux

3.2 LAN

• Ip-address: 192.168.254.254

• Running services: telnet, ftp

3.3 WLAN

• Ip-address: 192.168.127.254

• SSID: OpenNetCom

• Channel: 7

• Encryption: WEP

• Password: linux

11

	Hardware
	Components
	Startup
	RS-driver
	Service-Board-Connector

	Software
	Bootloader
	Linux
	Development
	Cross-Compiler
	uClinux Compilation
	User-Application
	Debugging
	Kernel-Debugging
	Examples

	Miscellaneous Applications
	Proc-Filesystem
	Daemons (Telnet, Ftp)
	rbcfg
	socat
	setserial and stty
	iwconfig, iwpriv and iwlist

	General Information
	System
	LAN
	WLAN

